Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^{29}\cdot9^{10}-7\cdot2^{29}\cdot27^6}\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-2^2\cdot2^{27}\cdot3^{20}}{5\cdot2^{29}\cdot3^{20}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{2^{29}\cdot3^{18}\left(5\cdot2-3^2\right)}{2^{29}\cdot3^{18}\left(5\cdot3^2-7\right)}\)
\(=\dfrac{10-9}{5\cdot9-7}=\dfrac{1}{38}\)
Lời giải:
$\frac{15^8.27^2.2^{24}}{6^{14}.10^9}=\frac{3^8.5^8.(3^3)^2.2^{24}}{2^{14}.3^{14}.2^9.5^9}$
$=\frac{3^8.5^8.3^6.2^{24}}{2^{14}.3^{14}.2^9.5^9}$
$=\frac{3^{14}.5&8.2^{24}}{2^{23}.3^{14}.5^9}=\frac{5^8.2^{24}}{2^{23}.5^9}$
$=\frac{2}{5}$
Bạn lưu ý lần sau ghi đầy đủ cả yêu cầu đề ra nhé. Và nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hình dung đề dễ hơn.
45^10*5^20/75^15
=5^10*9^10*5^20/(5^2)^15
=5^10*5^20*9^10/5^30
=9^10
(0.8)^5/(0.4)^6
=(0.4)^5*2^5/(0.4)^6
=2^5/(0.4)
=32/(0.4)
=80
2^15*9^4/6^6*8^3
=2^15*(3^2)^4/2^6*3^6*(2^3)^3
=2^15*3^8/2^6*3^6*2^9
=3^2
=9
a, (-0,2)2 \(\times\) 5 - \(\dfrac{2^{13}\times27^3}{4^6\times9^5}\)
= 0,04 \(\times\) 5 - \(\dfrac{2^{13}\times3^9}{2^{12}\times3^{10}}\)
= 0,2 - \(\dfrac{2}{3}\)
= \(\dfrac{2}{10}\) - \(\dfrac{2}{3}\)
= - \(\dfrac{7}{15}\)
b, \(\dfrac{5^6+2^2.25^3+2^3.125^2}{26.5^6}\)
= \(\dfrac{5^6+4.5^6+8.5^6}{26.5^6}\)
= \(\dfrac{5^6.\left(1+4+8\right)}{26.5^6}\)
= \(\dfrac{1}{2}\)
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
a) 158 x 94
= 158 x ( 32 )4
= 158 x 38
= ( 15 x 3 )8 = 458
b) 49 : 527
= 49 : ( 53 ) 9
= 49 : 1259
= \(\left(\frac{4}{125}\right)^9\)
c) 2010 : 220
= 2010 : ( 22 )10
= 2010 : 410 = ( 20 : 4 ) 10 = 510
d) 275 : ( -7 ) 15
= 275 : [ ( - 7 )3 ]5
= 275 : ( - 21 )5
= \(\left(\frac{27}{-21}\right)^5=\left(\frac{9}{-7}\right)^5\)
Cbht
3.
a) \(\left(x-1\right)^3=125\)
=> \(\left(x-1\right)^3=5^3\)
=> \(x-1=5\)
=> \(x=5+1\)
=> \(x=6\)
Vậy \(x=6.\)
b) \(2^{x+2}-2^x=96\)
=> \(2^x.\left(2^2-1\right)=96\)
=> \(2^x.3=96\)
=> \(2^x=96:3\)
=> \(2^x=32\)
=> \(2^x=2^5\)
=> \(x=5\)
Vậy \(x=5.\)
c) \(\left(2x+1\right)^3=343\)
=> \(\left(2x+1\right)^3=7^3\)
=> \(2x+1=7\)
=> \(2x=7-1\)
=> \(2x=6\)
=> \(x=6:2\)
=> \(x=3\)
Vậy \(x=3.\)
Chúc bạn học tốt!
\(\dfrac{27^4\cdot15^3\cdot8^2}{6^7\cdot9^3\cdot15}=\dfrac{3^{12}\cdot3^3\cdot5^3\cdot2^6}{2^7\cdot3^7\cdot3^6\cdot3\cdot5}\)
\(=\dfrac{3^{15}\cdot5^3\cdot2^6}{2^7\cdot3^{14}\cdot5}=\dfrac{2^6}{2^7}\cdot\dfrac{3^{15}}{3^{14}}\cdot\dfrac{5^3}{5}\)
\(=\dfrac{3\cdot5^2}{2}=\dfrac{3\cdot25}{2}=\dfrac{75}{2}\)
\(\dfrac{27^4.15^3.8^2}{6^7.9^3.15}=\dfrac{\left(3^3\right)^4.\left(3.5\right)^3.\left(2^3\right)^2}{\left(2.3\right)^7.\left(3^2\right)^3.\left(3.5\right)}\\ =\dfrac{3^{12}.3^3.5^3.2^6}{2^7.3^7.3^6.3.5}=\dfrac{3^{15}.2^6.5^3}{3^{14}.2^7.5}\\ =\dfrac{3.5^2}{2}=\dfrac{75}{2}\)