\(2x^2-5xy+2y^2\)        

 

 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

14 tháng 7 2016

\(3x^2y-5xy^2=xy\left(3x-5y\right)\).

2 tháng 2 2017

b) 2x^2 + 7x - 15

2x^2 + 10x - 3x -15

2x(x+5) - 3(x+5)

(x+5)(2x-3)

2 tháng 2 2017

a, 5x^3y - 10x^2y^2 + 5xy^3 = 5xy. ( x^2 - 2xy + y^2) = 5xy.( x-y)^2

b, 2x^2 + 7x -15 = 2x^2 + 10X - 3x -15

                       = 2x( x+5) - 3( x+5)

                 = ( 2x-3) (x+5) 

10 tháng 9 2017

khó quá cho bài dễ tí đi

26 tháng 7 2018

d)  \(2x^2-3x-27\)

\(=\left(2x^2+6x\right)-\left(9x+27\right)\)

\(=2x\left(x+3\right)-9\left(x+3\right)\)

\(=\left(2x-9\right)\left(x+3\right)\)

e)  \(2x^2-5xy-3y^2\)

\(=\left(2x^2+xy\right)-\left(6xy+3y^2\right)\)

\(=2x\left(x+y\right)-3y\left(x+y\right)\)

\(=\left(2x-3y\right)\left(x+y\right)\)

28 tháng 10 2016

Làm tính nhân

(4x3+3xy2-2y3).(3x2-5xy-6y2)

=12x5+12y5-20x4y-36x2y3-8xy4

Phân tích đa thức thành nhân tử

10x3+5x2y-10x2y-10xy2+5y3

=10x3-5x2y-10xy2+5y3

=5(2x3-x2y-2xy2+y3-)

21 tháng 1 2017

\(x^4+y^2-2x^2y+x^2+2x-2y\)

\(=\left(y^2-x^2y-xy\right)-\left(x^2y-x^4-x^3\right)+\left(xy-x^3-x^2\right)-\left(2y-2x^2-2x\right)\)

\(=y\left(y-x^2-x\right)-x^2\left(y-x^2-x\right)+x\left(y-x^2-x\right)-2\left(y-x^2-x\right)\)

\(=\left(y-x^2+x-2\right)\left(y-x^2-x\right)\)

20 tháng 8 2020

Bài làm:

Ta có: \(a^2x^2+b^2y^2-a^2y^2-b^2x^2\)

\(=a^2\left(x^2-y^2\right)-b^2\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right)\left(x^2-y^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(x-y\right)\left(x+y\right)\)

20 tháng 8 2020

\(a^2x^2+b^2y^2-a^2y^2-b^2x^2\)

\(=\left(a^2x^2-a^2y^2\right)-\left(b^2x^2-b^2y^2\right)\)

\(=a^2\left(x^2-y^2\right)-b^2\left(x^2-y^2\right)\)

\(=\left(a^2-b^2\right)\left(x^2-y^2\right)\)