Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔOBC cân tại O
mà OA là đường cao
nên OA là phân giác của góc BOC
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OBA}=\widehat{OCA}=90^0\)
=>AC là tiếp tuyến của (O;R)
b: \(\widehat{MOA}+\widehat{COA}=\widehat{MOC}=90^0\)
\(\widehat{MAO}+\widehat{BOA}=90^0\)(ΔBAO vuông tại B)
mà \(\widehat{COA}=\widehat{BOA}\)
nên \(\widehat{MOA}=\widehat{MAO}\)
=>ΔMAO cân tại M
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
Câu c.
Gọi K là trung điểm của BH
Chỉ ra K là trực tâm của tam giác BMI
Chứng minh MK//EI
Chứng minh M là trung điểm của BE (t.c đường trung bình)
b: MC^2=ME*MB
=>MA^2=ME*MB
=>MA/ME=MB/MA
Xét ΔMAB và ΔMEA có
MA/ME=MB/MA
góc AMB chung
=>ΔMAB đồng dạng với ΔMEA
=>góc MAE=góc MBA
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
\(\widehat{KBN}\) là góc tạo bởi tiếp tuyến BK và dây cung BN
\(\widehat{BCN}\) là góc nội tiếp chắn cung BN
Do đó: \(\widehat{KBN}=\widehat{BCN}\)
Xét ΔKBN và ΔKCB có
\(\widehat{KBN}=\widehat{KCB}\)
\(\widehat{BKN}\) chung
Do đó: ΔKBN~ΔKCB
=>\(\dfrac{KB}{KC}=\dfrac{KN}{KB}\)
=>\(KB^2=KN\cdot KC\)
b: Ta có: \(KB^2=KN\cdot KC\)
KB=KA
Do đó: \(KA^2=KN\cdot KC\)
=>\(\dfrac{KA}{KN}=\dfrac{KC}{KA}\)
Xét ΔKAC và ΔKNA có
\(\dfrac{KA}{KN}=\dfrac{KC}{KA}\)
\(\widehat{AKC}\) chung
Do đó: ΔKAC~ΔKNA
=>\(\widehat{KCA}=\widehat{KAN}\)
Xét (O) có
\(\widehat{NCA}\) là góc tạo bởi tiếp tuyến CA và dây cung CN
\(\widehat{NMC}\) là góc nội tiếp chắn cung CN
Do đó: \(\widehat{NCA}=\widehat{NMC}\)
=>\(\widehat{NMC}=\widehat{NAK}\)
=>AB//CM
Dựa vào thông tin đã được cung cấp, chúng ta có thể chứng minh như sau:
a) Chứng minh: OA vuông góc BC tại H và BK^2=KN.KC
b) Chứng minh: MC//AB
Tóm lại, dựa vào thông tin đã cung cấp, chúng ta có thể chứng minh a) và b) theo yêu cầu của câu hỏi.