K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0
25 tháng 5 2021

Xét tam giác BCK vuông tại K có KF là đường trung tuyến nên \(KF=\dfrac{BC}{2}=FB\). Suy ra tam giác FBK cân tại F.

Từ đó FI vuông góc với BK.

Ta có \(\widehat{EIF}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{FBE}\).

Suy ra tứ giác EBIF nội tiếp.

Từ đó \(\widehat{AFE}=90^o-\widehat{BFE}=90^o-\widehat{BIE}=90^o-\widehat{KIN}=\widehat{KNI}=\widehat{ACE}\) nên tứ giác AEFC nội tiếp.

Ta có \(\widehat{EAF}=\widehat{ECF}=\widehat{ABE}\) nên AN là tiếp tuyến của (ABE).

 

25 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC

Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét ΔBOA vuông tại B có \(cosBOA=\dfrac{BO}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BOA}=60^0\)

Xét ΔBOA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2\)

=>\(OH\cdot2R=R^2\)

=>\(OH=\dfrac{R^2}{2R}=\dfrac{R}{2}\)

b: Ta có: \(\widehat{ABM}+\widehat{OBM}=\widehat{OBA}=90^0\)

\(\widehat{HBM}+\widehat{OMB}=90^0\)(ΔHMB vuông tại H)

mà \(\widehat{OBM}=\widehat{OMB}\)

nên \(\widehat{ABM}=\widehat{HBM}\)

=>BM là phân giác của góc ABH

Xét ΔABC có

BM,AM là các đường phân giác

BM cắt AM tại M

Do đó: M là tâm đường tròn nội tiếp ΔABC

a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)

nên AIOC là tứ giác nội tiếp

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

mà OB=OC

nên OA là đường trung trực của BC

hay OA⊥BC

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)

a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)

nên AIOC là tứ giác nội tiếp

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

mà OB=OC

nên OA là đường trung trực của BC

hay OA⊥BC

b: Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔAEB

Suy ra: AB/AE=AD/AB

hay \(AB^2=AD\cdot AE\)

18 tháng 12 2023

a: Ta có: ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

=>OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

b: Ta có: \(\widehat{KOA}+\widehat{BOA}=\widehat{BOK}=90^0\)

\(\widehat{KAO}+\widehat{COA}=90^0\)(ΔCOA vuông tại C)

mà \(\widehat{BOA}=\widehat{COA}\)

nên \(\widehat{KOA}=\widehat{KAO}\)

=>ΔKAO cân tại K

6 tháng 12 2017

Câu c.

Gọi K là trung điểm của BH

Chỉ ra K là trực tâm của tam giác BMI

Chứng minh MK//EI

Chứng minh M là trung điểm của BE (t.c đường trung bình)