Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có △AOC vuông tại C
⇒sin^CAO=OC/OA
⇒CAOˆ=30°
Mà A là giao điểm của 2 tiếp tuyến của (O)
⇒BACˆ=2.OACˆ=2.30° =60° (1)
Và AB=AC(2)
Từ (1),(2)⇒△ABC đều
b) Ta có OD⊥OB
AB⊥OB
Suy ra OD//AB⇒OD//AE(3)
Chứng minh tương tự: OE//AD(4)
Tự (3),(4)⇒ADOE là hình bình hành
Ta có △AOC vuông tại C
⇒OABˆ+AOBˆ=90°
⇒AOBˆ=90° −OABˆ=90° −30° = 60°
Ta lại có:DOBˆ=90°
⇒DOAˆ+AOBˆ=90°
⇔DOAˆ+ 60°=90°
⇒ DOAˆ=30°
⇒OADˆ=DOAˆ =30°
⇒△DOA cân tại D⇒AD=DO
Mà ADOE là hình bình hành
Vậy ADOE là hình thoi
c) Ta gọi H là giao điểm hai đường chéo OA và DE của hình thoi ADOE
⇒OH=HA=OA/2=2R/2=R
⇒H nằm trên đường tròn (O)
Và AO⊥DE ⇒ OHDˆ= 90°
Vậy DE là tiếp tuyến của đường tròn (O) tại H
1: ΔODE cân tại O
mà ON là trung tuyến
nên ON vuông góc DE
góc OBA=góc ONA=góc OCA=90 độ
=>O,N,B,A,C cùng thuộc đường tròn đường kính OA
2: góc BOC=2*góc AOC=2*góc ANC
3: Xét ΔABD và ΔAEB có
góc ABD=góc AEB
góc BAD chung
=>ΔABD đồng dạng với ΔAEB
=>AB^2=AD*AE=AH*AO
=>AD/AO=AH/AE
=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE
=>góc HOE+góc HDE=180 độ
=>DHOE nội tiếp