K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 4x=5y

=>\(\dfrac{x}{5}=\dfrac{y}{4}\)

7y=4z

=>\(\dfrac{y}{4}=\dfrac{z}{7}\)

Do đó: \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}\)

mà x-y-z=24

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=\dfrac{x-y-z}{5-4-7}=\dfrac{24}{-6}=-4\)

=>\(x=-4\cdot5=-20;y=-4\cdot4=-16;z=-4\cdot7=-28\)

b:

Sửa đề: x+y-z=38

 \(\dfrac{x}{5}=\dfrac{y}{4}\)

=>\(\dfrac{x}{15}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{2}\)

=>\(\dfrac{y}{12}=\dfrac{z}{8}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}\)

mà x+y-z=38

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta đưọc:

\(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}=\dfrac{x+y-z}{15+12-8}=\dfrac{38}{19}=2\)

=>\(x=2\cdot15=30;y=2\cdot12=24;z=2\cdot8=16\)

3 tháng 3

4x=5y;7y=4zvax-y-z=24
Để giải hệ phương trình này, chúng ta sẽ sử dụng phương pháp thế vào. Trước tiên, chúng ta sẽ giải phương trình đầu tiên để tìm giá trị của $x$ dựa trên $y$:

$$4x = 5y$$
$$x = \frac{5y}{4}$$

Tiếp theo, chúng ta sẽ thay thế giá trị của $x$ vào phương trình thứ hai để tìm giá trị của $z$ dựa trên $y$:

$$7y = 4z$$
$$z = \frac{7y}{4}$$

Cuối cùng, chúng ta sẽ thay thế giá trị của $x$ và $z$ vào phương trình thứ ba để tìm giá trị của $v$:

$$x - y - z = 24$$
$$\frac{5y}{4} - y - \frac{7y}{4} = 24$$
$$\frac{5y - 4y - 7y}{4} = 24$$
$$\frac{-6y}{4} = 24$$
$$-6y = 96$$
$$y = -16$$

Sau khi tìm được giá trị của $y$, chúng ta có thể tính toán các giá trị còn lại:

$$x = \frac{5y}{4} = \frac{5(-16)}{4} = -20$$
$$z = \frac{7y}{4} = \frac{7(-16)}{4} = -28$$
$$v = x - y - z = -20 - (-16) - (-28) = -20 + 16 + 28 = 24$$

Vậy, giá trị của $x$, $y$, $z$ và $v$ lần lượt là -20, -16, -28 và 24.