K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

Ta có:

\(\dfrac{1+3y}{12}=\dfrac{1+7y}{4x}=\dfrac{1+1+3y+7y}{12+4x}\)

\(=\dfrac{2+10y}{2.\left(6+2x\right)}=\dfrac{2.\left(1+5y\right)}{2.\left(6+2x\right)}=\dfrac{1+5y}{6+2x}=\dfrac{1+5y}{5x}\)

- Xét \(1+5y=0\Rightarrow y=\dfrac{-1}{5}\Rightarrow1+5y=0\) ( loại )

- Xét \(1+5y\ne0\Rightarrow6+2x=5x\)

\(\Rightarrow5x-2x=6\)

\(\Rightarrow3x=6\)

\(\Rightarrow x=2\)

\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}\)

\(\Rightarrow\dfrac{1+3y}{12}=\dfrac{1+5y}{10}\)

\(\Rightarrow10.\left(1+3y\right)=12.\left(1+5y\right)\)

\(\Rightarrow10+30y=12+60y\)

\(\Rightarrow10-12=60y-30y\)

\(\Rightarrow-2=30y\)

\(\Rightarrow y=\dfrac{-1}{5}\)

Vậy \(x=2\) , \(y=\dfrac{-1}{5}\)

22 tháng 10 2017

a, 1+2y / 18 = 1+4y / 24 = 1+6y / 6x

Ta có : 1+2y / 18 = 1+6y / 6x = 1+2y + 1+6y / 18 + 6y

= 2+ 8y / 18+6y = 2 (1+4y) / 2( 9 +3y) = 1+4y/9+3y

Ta lại có : 1 + 4y/24 = 1+4y / 9+3y

=> 24=9+3y => 15=3y => y=5

Vậy y=5

Nhớ like

22 tháng 10 2017

b, 1+3y/12 = 1+5y/5x = 1+7y/4x

Ta có : 1+3y/12 = 1+7y/4x = 1+3y+1+7y / 12 +4x

= 2 + 10y / 12 +4x = 2 (1+5y) / 2 (6+2x) = 1+5y / 6+2x

Ta lại có: 1+5y / 5x = 1+5y / 6+2x

=> 5x = 6+2x => 3x = 6 => x=2

Vậy x =2

14 tháng 12 2017

de ma

25 tháng 11 2018

dễ mà k trả lời cũng như không ucchedập tắt niềm tin của ng khác, thấy ghét, hứ

b: \(ab\cdot bc\cdot ac=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{1}{4}\)

\(\Leftrightarrow\left(abc\right)^2=\dfrac{1}{4}\)

Trường hợp 1: abc=1/2

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{1}{2}:\dfrac{1}{2}=1\\a=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\\b=\dfrac{1}{2}:\dfrac{3}{4}=\dfrac{1}{2}\cdot\dfrac{4}{3}=\dfrac{2}{3}\end{matrix}\right.\)

Trường hợp 2: abc=-1/2

\(\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-\dfrac{3}{4}\\b=-\dfrac{2}{3}\end{matrix}\right.\)

c: Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{y-2}{1}\\\dfrac{y-2}{3}=\dfrac{z-3}{4}\end{matrix}\right.\Leftrightarrow\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{6}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot6-3\cdot6+3\cdot4}=\dfrac{45}{6}=\dfrac{15}{2}\)

Do đó: x-1=45; y-2=45/2; z-3=30

=>x=46; y=49/2; z=33

14 tháng 12 2017

ko ai trả lời hẳn một đống cho cậu đâu chi

15 tháng 12 2017

k cần trả lời hết cũng đc

nhưng có trả lời là đc rùi

7 tháng 11 2017

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{1+3y}{12}=\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+7y-1-5y}{4x-5x}=\dfrac{2y}{-x}=\dfrac{1+5y-1-3y}{5x-12}=\dfrac{2y}{5x-12}\)

=>\(\dfrac{2y}{-x}=\dfrac{2y}{5x-12}\) với y=0 thay vào không thỏa mãn

nếu y khác 0

=>-x=5x-12

=>x=2. Thay x=2 vào trên ta được

\(\dfrac{1+3y}{12}=\dfrac{2y}{-2}=-y=>1+3y=-12y=>1=-15y=\dfrac{-1}{15}\)

Vậy x=2,y=\(\dfrac{-1}{15}\) thỏa mãn đề bài

7 tháng 11 2017

Tự hỏi tự trả lời giống tự kỉ lắm, lần sau đừng như vậy nữa. NHẮC.

2 tháng 11 2017

\(\dfrac{1+3y}{12}==\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}\)

\(\Rightarrow\dfrac{1+5y}{5x}=\dfrac{1+7y}{4x}=\dfrac{1+5y-1+7x}{\left(5x-4x\right)}=\dfrac{-2y}{x}\)

\(\Rightarrow\dfrac{\left(1+5y\right)}{5}=-2y\)

Giải ra ta có: \(y=\dfrac{-1}{15}\)

\(\Leftrightarrow x=2\)

3 tháng 11 2017

sao có x = 2