Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 22 + 23 +...+ 29
2S = 2 + 22 + 23+...+ 29 + 210
2S - S = 210 - 1
S = 210 - 1
P = 5.20 = 5 < 7 = 23 - 1 < 210 -1 = S
S > P
S = 2 + 23 + ... + 221
=> 4S = 23 + 25 + ... + 223
=> 4S - S = 223 - 2
=> S = \(\frac{2^{23}-2}{3}\)
Theo bài ra: 22.S = 4.\(\frac{2^{23}-2}{3}\)=11184808
Ý bạn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu thế thì mình giải cho
Ý bn là:
Cho \(S=2+2^2+2^3+...+2^{95}+2^{96}.\)Chứng tỏ \(S⋮24\)
Nếu vậy thì mình giải cho
S = ( 21 + 22 ) + ( 23 + 24 ) + ..... + ( 259 + 260 )
S = 2 x ( 1 + 2 ) + 23 x ( 1 + 2 ) + .......... + 259 x ( 1 + 2 )
S = 2 x 3 + 23 x 3 + ..... + 259 x 3
S = ( 2 + 23 + ........ + 259 ) x 3
mà 3 \(⋮\)3 => S \(⋮\) 3
Ta có :
S= 2^1+2^2+2^3+...+2^60
S= (2^1+2^2)+(2^3+2^4)+...+(2^59+2^60)
s=2(1+2)+2^3(1+2)+...+2^59(1+1)
S= 3(2+2^3+...+2^59)
=> đpcm
Ta có: 2E= 2+2^2+2^3+2^4+...+2^10
2E - E = (2+2^2+2^3+2^4+...+2^10) - (1+2+2^2+2^3+...+2^9)
E = 2^10-1
Bạn ấy viết như thế này nè :
2 - 22 + 23 - 24+...+269
\(S=1+2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2022}+2^{2023}\)
trừ vế với vế ta được :
\(2S-S=2^{2023}-1\)
\(\Rightarrow S=2^{2023}-1\)