Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4
b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6
a) n^2.(n+1)+2n.(n+1)
= (n+1).(n^2+2n)
= n.(n+1).(n+2) chia hết cho 6 ( do 3 số liên tiếp chia hết cho 6)
b) (2n-1)^3 - (2n-1)
= (2n-1).[(2n-1)^2 - 1]
= (2n-1).(2n-1-1).(2n-1+1)
= (2n-1).2.(n-1).2n
= 4.n.(n-1).(2n-1)
mà n.(n-1) là 2 số tự nhiên liên tiếp
=> n hoặc n - 1 sẽ chia hết cho 2
=> 4.n.(n-1) sẽ chia hết cho 4.2 = 8
=> 4.n.(n-1).(2n-1) chia hết cho 8
=> (2n-1)^3 - (2n-1) chia hết cho 8
\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)
b: \(A=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a;a+1;a+2 là ba số liên tiếp
nên \(A⋮3!\)
hay A chia hết cho 6
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên nhé!
Chứng minh rằng (n thuộc Z)
a) n2(n + 1) + 2n(n + 1)
= (n + 1)(n2 + 2n)
= n(n + 1)(n + 2) \(⋮\) 6 (với mọi \(n\in Z\))
Vậy n2(n + 1) + 2n(n + 1) chia hết cho 6 (với mọi \(n\in Z\))
b) (2n - 1)3 - (2n - 1)
= (2n - 1)[(2n - 1)2 - 12]
= (2n - 1)(2n - 1 + 1)(2n - 1 - 1)
= 2n(2n - 1)(2n - 2)
= 4n(2n - 1)(n - 1) \(⋮4\left(1\right)\)
Mà (2n - 1)(n - 1) = (n + n - 1)(n - 1) \(⋮2\left(2\right)\)
Từ (1) và (2) suy ra: (2n - 1)3 - (2n - 1) chia hết cho 8 (với mọi \(n\in Z\))
EZ NUB BRO CRY :>
Giả sử : A=(2n+3)2-(2n-1)2
=(4n2+12n+9)-(4n2-4n+1)
=(4n2-4n2)+(12n+4n)+(9-1)
=16n+8
=8(2n+1) ⋮ 8
Vậy A⋮8 (đpcm)
học lại hàng đẳng thức đáng nhớ đi bro :>