Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số cần tìm là a,b,c
Theo đề, ta có: a/1=b/3 và b/1=c/5
=>a/1=b/3=c/15
Áp dụng tính chất của DTSBN, ta được:
a/1=b/3=c/15=(a+b+c)/(1+3+15)=190/19=10
=>a=10; b=30; c=150
Theo đề ta có:
Tổng 3 số bằng :
a + b + c = -84 (1)
Tỉ số giữa số thứ nhất và số thứ hai bằng 1/2 và tỉ số giữa số thứ hai và số thứ ba cũng bằng 1/2
=> a/b = b/c = 1/2 (2)
Từ (1) và (2) giải hệ ta có
a = -12 ; b= -24 ; c = -48
Gọi ba số thỏa mãn đề bài là: \(x\); y; z
Theo bài ra ta có:
\(x+y+z\) = -84 (1)
\(\dfrac{x}{y}\) = \(\dfrac{1}{2}\) ⇒ \(x\) = \(\dfrac{1}{2}y\); \(\dfrac{y}{z}\) = \(\dfrac{1}{2}\) ⇒ \(z\) = 2\(y\)
thay \(x\) = \(\dfrac{1}{2}y\) và z = 2y vào biểu thức (1) ta có:
\(\dfrac{1}{2}\)y + y + 2y = -84 ⇒ \(\dfrac{7}{2}y\) = -84⇒ y = -84: \(\dfrac{7}{2}\) = -24; \(x\) =-24 \(\times\) \(\dfrac{1}{2}\) = -12
z = -24 \(\times\) 2 = -48
Kết luận: (\(x\);y;z) =(-12; -24; -48)
Gọi số thứ nhất là a; số thứ hai là b ; số thứ ba là c . Ta có :
\(\hept{\begin{cases}\frac{a}{b}=\frac{1}{2}\\\frac{b}{c}=\frac{1}{2}\\a+b+c=-84\end{cases}}\)\(\Rightarrow\)\(a=2x\)và \(b=2y=4x\)
Vì \(x+2x+4x=-84\)
Nên \(\Rightarrow\hept{\begin{cases}a=-12\\b=2x=-24\\c=4x=-48\end{cases}}\)
Vậy số thứ nhất = -12 ; số thứ hai = -24 và số thứ ba bằng -48
Gọi các số đó lần lượt là a ; b ; c. Ta có:
\(\hept{\begin{cases}\frac{a}{b}=\frac{1}{2}\\\frac{b}{c}=\frac{1}{2}\\a+b+c=-84\end{cases}}\)
= > a = 2x và b = 2y = 4x
Vì x + 2x = 4x = - 84
Nên = >\(\hept{\begin{cases}a=-12\\b=2x=-24\\c=4x=-48\end{cases}}\)
Vậy...............
GỌi số thứ nhất là x;số thứ 2 là y;số thứ 3 là z
Theo bài ra ta có:
\(x+y+z=84\)
\(\frac{y}{z}=\frac{1}{2}\Rightarrow y=\frac{z}{2}\)(1)
\(\frac{x}{y}=\frac{1}{2}\Rightarrow2x=y\)(2)
Từ (1)và (2)=>\(2x=y=\frac{z}{2}\Rightarrow x=\frac{y}{2}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ;ta được:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{x+y+z}{1+2+4}=\frac{84}{7}=12\)
\(\Rightarrow\hept{\begin{cases}x=12\\y=12.2=24\\z=12.4=48\end{cases}}\)
Vậy 3 số cần tìm là:12;24;48
Mk giải cho bài này.Mak lộn bài phía trên rồi.Thứ lỗi cho mk nha.hihi
Bài 1 :
Gọi a,b,c là 3 số tự nhiên phải tìm ;
\(\frac{a}{b}=\frac{2}{3},\frac{b}{c}=\frac{5}{6}\Rightarrow a=\frac{2}{3}b,c=\frac{6}{5}\)\(b\)
và \(a^2+b^2+c^2=2596\)nên \(\frac{4}{9}b^2+b^2+\frac{36}{25}b^2=2596\)hay \(\frac{649}{225}b^2=2596\Rightarrow b^2=900\)
\(\Rightarrow b=30,a=\frac{2}{3}.30=20,c=\frac{6}{5}.30=36\)
Bài 2 :
\(\frac{a}{b}=\frac{2}{7}.\frac{a+35}{b}=\frac{11}{14}\)
Ta có : \(\frac{a}{b}+\frac{35}{b}=\frac{11}{14}\Rightarrow\frac{35}{b}=\frac{11}{14}-\frac{a}{b}=\frac{11}{14}-\frac{2}{7}=\frac{1}{2}\)
Do đó : \(b=35.2=70,a=\frac{2}{7}.70=20\)
Chúc bạn học tốt ( -_- )
Gọi số thứ nhất là a
=> Số thứ hai là 3/2a
Số thứ 3 là 9/4a
Vì tổng các luỹ thừa bậc 3 của 3 số nguyên là -1009, nên ta có:
\(a^3+\left(\dfrac{3}{2}a\right)^3+\left(\dfrac{9}{4}a\right)^3=-1009\\ \Leftrightarrow a^3+\dfrac{27}{8}a^3+\dfrac{729}{64}a^3=-1009\\ \Leftrightarrow\dfrac{1009}{64}a^3=-1009\\ \Leftrightarrow\dfrac{a^3}{64}=-1\\ \Leftrightarrow\left(\dfrac{a}{4}\right)^3=\left(-1\right)^3=-1\\ \Leftrightarrow\dfrac{a}{4}=-1\\ \Leftrightarrow a=-4\)
Vậy số thứ nhất là 4, số thứ hai là 6 và số thứ ba là 9.
Ta có sơ đồ:
STN:3 phần
Ta có sơ đồ:
STN:1 phần
STH:3 phần
STB:15 phần
Tổng ba số 190
Tổng số phần bằng nhau là:
1+3+15=19(phần)
STN là:
190:19x1=10
STH là:
190:19x3=30
STB là:
190-10-30=150
Đáp số:.......