K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Mỗi phần tử của không gian mẫu là một tổ hợp chập 3 của 4 phần tử. Do đó, số phần tử của không gian mẫu là: \(n\left( \Omega  \right) = C_4^3\) ( phần tử)

b) +) Sự kiện “Tổng các số trên ba tấm bìa bằng 9” tương ứng với biến cố \(A = \left\{ {\left( {4;3;2} \right)} \right\}\)

+) Sự kiện “Các số trên ba tấm bìa là ba số tự nhiên liên tiếp” tương ứng với biến cố \(B = \left\{ {\left( {1;2;3} \right),\left( {2;3;4} \right)} \right\}\)

c) +) Ta có: \(n\left( A \right) = 1\),\(n\left( B \right) = 2\)

+) Vậy xác suất của biến cố A và B là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{1}{4};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}} = \frac{2}{4} = \frac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Chiều rộng của tấm bìa là \(\overline R  = 170 \pm 2mm\), nghĩa là chiều rộng gần đúng \(R = 170\)với độ chính xác \(d = 2\)

Suy ra kích thước chiều rộng nằm trong khoảng \(\left[ {170 - 2;170 + 2} \right]\) hay \(\left[ {168;{\rm{ }}172} \right].\)

Tương tự, chiều dài của tấm bìa là \(\overline D  = 240 \pm 2mm\)

Vậy kích thước chiều dài nằm trong khoảng \(\left[ {240 - 2;240 + 2} \right]\) hay \([238;242]\)

b) Chiều rộng gần đúng là 170 mm, chiều dài gần đúng là 240 mm.

Khi đó, diện tích tấm bìa là \(S = 170.240 = 40800\;(m{m^2})\)

Diện tích đúng, kí hiệu \(\overline S \), của tấm bìa trên thỏa mãn:

\(168.238 < \overline S  < 172.242 \Leftrightarrow 39984 < \overline S  < 41624\)

Do đó \(39984 - 40800 < \overline S  - 40800 < 41624 - 40800\) hay \( - 816 < \overline S  - S < 824 \Rightarrow \left| {\overline S  - S} \right| < 824\)

Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)

Cách 2:

Diện tích tấm bìa là:

\(\overline S  = \left( {170 \pm 2} \right)\left( {240 \pm 2} \right) = 170.240 \pm \left( {170.2 + 240.2 + 2.2} \right) = 40800 \pm 824\left( {m{m^2}} \right)\)

Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)

18 tháng 12 2020

a, \(A\cup B=(-4;5]\)

\(A\cap B=[-3;4)\)

\(A\backslash B=\left[4;5\right]\)

\(B\backslash A=\left(-4;-3\right)\)

b, \(A\cup B=\left(-3;7\right)\)

\(A\cap B=[1;2)\cup(3;5]\)

\(A\backslash B=\left[2;3\right]\)

\(B\backslash A=\left(-3;1\right)\cup\left(5;7\right)\)

c, \(A\cup B=\left[\dfrac{1}{2};3\right]\)

\(A\cap B=\left[1;\dfrac{3}{2}\right]\)

\(A\backslash B=[\dfrac{1}{2};1)\)

\(B\backslash A=(\dfrac{3}{2};3]\)

d, \(A\cup B=(-5;2]\cup(3;6]\)

\(A\cap B=\left\{0\right\}\cup[4;5)\)

\(A\backslash B=(0;2]\cup\left[-5;6\right]\)

\(B\backslash A=[-5;0)\cup\left(3;4\right)\)

17 tháng 9 2023

\(A=\left\{x\in R|\left(x-2x^2\right)\left(x^2-3x+2\right)=0\right\}\)

Giải phương trình sau :

 \(\left(x-2x^2\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(1-2x\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-2x=0\\x-1=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\\x=2\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;\dfrac{1}{2};1;2\right\}\)

\(B=\left\{n\in N|3< n\left(n+1\right)< 31\right\}\)

Giải bất phương trình sau :

\(3< n\left(n+1\right)< 31\)

\(\Leftrightarrow\left\{{}\begin{matrix}n\left(n+1\right)>3\\n\left(n+1\right)< 31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n^2+n-3>0\\n^2+n-31< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}n< \dfrac{-1-\sqrt[]{13}}{2}\cup n>\dfrac{-1+\sqrt[]{13}}{2}\\\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{-1-5\sqrt[]{5}}{2}< n< \dfrac{-1-\sqrt[]{13}}{2}\\\dfrac{-1+\sqrt[]{13}}{2}< n< \dfrac{-1+5\sqrt[]{5}}{2}\end{matrix}\right.\)

Vậy \(B=\left(\dfrac{-1-5\sqrt[]{5}}{2};\dfrac{-1-\sqrt[]{13}}{2}\right)\cup\left(\dfrac{-1+\sqrt[]{13}}{2};\dfrac{-1+5\sqrt[]{5}}{2}\right)\)

\(\Rightarrow A\cap B=\left\{2\right\}\)

1.) liệt kê các tập hợp sau : a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\) b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\) c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\) B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0 d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\) e.) E =...
Đọc tiếp

1.) liệt kê các tập hợp sau :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N|}2\le x\le10\left\{\right\}\)

b.) B =\(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in Z|9\le x^2\le36\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N}^{\cdot}|3\le n^2\le30\left\{\right\}\)

B.) B là tập hợp các số thực x thỏa x2 - 4x +2 = 0

d.) D = \(\left\{{}\begin{matrix}\\\end{matrix}\right.\frac{1}{n+1}}|n\in N;n\le4\left\{\right\}\)

e.) E = \(\left\{{}\begin{matrix}\\\end{matrix}\right.2n^2-1|n\in N^{\cdot}},n\le7\left\{\right\}\)

2.) chỉ ra tính chất đặc trưng :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;1;2;3;4\left\{\right\}}\)

b.) B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;8;12;16\left\{\right\}}\)

c.) C = \(\left\{{}\begin{matrix}\\\end{matrix}\right.0;4;9;16;25;36\left\{\right\}}\)

3.) Trong các tập hợp sau , tập hợp nào là con tập nào :

a.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.1;2;3\left\{\right\}}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.x\in N^{\cdot}|n\le4\left\{\right\}}\)

b.) A = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in N^{\cdot}}|n\le5\left\{\right\}\)

B = \(\left\{{}\begin{matrix}\\\end{matrix}\right.n\in Z|0\le|n|\le5\left\{\right\}}\)

0
30 tháng 11 2017

sky oi say oh yeah

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

Tập A sửa lại thành \(A=\left\{\frac{1}{6};\frac{1}{12};\frac{1}{20}; \frac{1}{30};....;\frac{1}{420}\right\}\)

Ta thấy:

\(\frac{1}{6}=\frac{1}{2.3}\)

\(\frac{1}{12}=\frac{1}{3.4}\)

\(\frac{1}{20}=\frac{1}{4.5}\)

.....

\(\frac{1}{420}=\frac{1}{20.21}\)

Do đó công thức tổng quát của các phần tử thuộc tập A là \(\frac{1}{x(x+1)}|x\in \mathbb{N}; 2\leq x\leq 20\)

Đáp án D.

1 tháng 12 2019

vâng cảm ơn rất nhiều ạ