\(A=\left(-\infty,-1\right)\cup\left(2,+\infty\right)\\ B=\left[-3.1\right]\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

ta có:

A = {x\(\in\) R; -5 \(\le\) x < 7}

\(\Rightarrow\) A = [-5;7)

\(\Rightarrow\) \(C^A_R\) = (-\(\infty\);-5) \(\cup\) [7;+\(\infty\))

Đáp án: D

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Lời giải:

Ta xét các TH sau:

TH1: \(x\geq 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=x-5\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=2x+2\)

Để hàm số đc xác định thì \(2x+2\neq 0\Leftrightarrow x\neq -1\), luôn đúng với \(x\geq 5\)

TH2: \(2< x< 5\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=2x-4\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=4x-8\)

Để hàm số đc xác định thì \(4x-8\neq 0\), điều này luôn đúng với \(2< x< 5\)

TH3: \(-1\leq x\leq 2\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=x+1\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=0\)

(Không thỏa mãn)

TH4: \(x< -1\)

\(\Rightarrow \left\{\begin{matrix} |2x-4|=4-2x\\ |x+1|=-(x+1)\\ |5-x|=5-x\end{matrix}\right.\Rightarrow |2x-4|+|x+1|-|5-x|=-2(x+1)\)

Để hàm số đc xác định thì \(-2(x+1)\neq 0\), điều này luôn đúng với mọi \(x< -1\)

Từ các TH trên , ta suy ra \(x\in (2; +\infty)\cup (-\infty; -1)\)

Vậy \(a=-1; b=2\)

NV
15 tháng 5 2020

\(\left(x-a\right)\left(ax+b\right)=0\Rightarrow\left[{}\begin{matrix}x=a\\x=-\frac{b}{a}\end{matrix}\right.\)

\(\Rightarrow\) Nghiệm của BPT: \(\left(-\infty;-\frac{b}{a}\right)\cup\left(a;+\infty\right)\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

$A\cap B\cap C=A\cap (B\cap C)$

Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$

Điều này xảy ra khi $2m>m\Leftrightarrow m>0$

Khi đó: $B\cap C=(m; 2m)$

$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$

$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$

$=(1;2)\cap (m; 2m)$ (do $m>0$)

Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:

\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)

Vậy...........

NV
15 tháng 5 2020

ĐKXĐ: \(x\ne1\)

\(\Leftrightarrow\left|2x-1\right|>2\left|x-1\right|\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(2x-2\right)^2>0\)

\(\Leftrightarrow4x-3>0\)

\(\Rightarrow x>\frac{3}{4}\)

\(\Rightarrow x\in\left(\frac{3}{4};1\right)\cup\left(1;+\infty\right)\)

Chẳng đáp án nào đúng cả :)

27 tháng 9 2019

B

NV
27 tháng 9 2020

Đúng bạn

- Nếu \(\left\{{}\begin{matrix}m-1\ge-2\\\frac{m+1}{2}\le2\end{matrix}\right.\) \(\Leftrightarrow-1\le m\le3\) thì \(A\cap B=\varnothing\) (ktm)

- Nếu \(m< -1\Rightarrow m-1< -2\Rightarrow A\cap B=[m-1;2)\) chứa vô số phần tử

- Nếu \(m>3\Rightarrow A\cap B=(2;\frac{m+1}{2}]\) cũng chứa vô số phần tử

Vậy ko tồn tại m để \(A\cap B\) chỉ chứa 1 phần tử

27 tháng 9 2020

hình như đề sai đúng không ta ai đấy giải thử cho em xem vs ạ