Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 9.27n = 35
=> 32.33n = 35
=> 32 + 3n = 35
=> 2 + 3n = 5
=> 3n = 5 - 2
=> 3n = 3
=> n = 1
b) (23 : 4).2n = 4
=> 2.2n = 4
=> 2n = 4 : 2
=> 2n = 2
=> n = 1
c) 3-2.34 . 3n = 37
=> 3-2 + 4 + n = 37
=> 32 + n = 37
=> 2 + n = 7
=> n = 7 - 2 = 5
d) 2-1.2n + 4.2n = 9.25
=> (1/2 + 4).2n = 9.25
=> 9/2.2n = 9.25
=> 2n = 9.25 : 9/2
=> 2n = 26
=> n = 6
\(a,9\cdot27^n=3^5\)
\(\Rightarrow9\cdot27^n=243\)
\(\Rightarrow27^n=243:9=27\)
\(\Rightarrow27^n=27^1\)
\(\Rightarrow x=1\)
\(b,\left(2^3:4\right)\cdot2^n=4\)
\(\Rightarrow\left(8:4\right)\cdot2^n=4\)
\(\Rightarrow2\cdot2^n=4\)
\(\Rightarrow2^n=4:2=2\)
\(\Rightarrow n=1\)
\(c,3^{-2}\cdot3^4\cdot3^n=3^7\)
\(\Rightarrow3^2\cdot3^n=3^7\)
\(\Rightarrow3^n=3^7:3^2=3^5\)
\(\Rightarrow n=5\)
\(d,2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(\Rightarrow2^n\cdot\left(2^{-1}+4\right)=9\cdot32\)
\(\Rightarrow2^n\cdot\frac{9}{2}=288\)
\(\Rightarrow2^n=288:\frac{9}{2}=64\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
a) \(9.27^n=3^5\Rightarrow3^2.\left(3^3\right)^n=3^5\)
\(\Rightarrow3^2.3^{3n}=3^5\Rightarrow3^{5n}=3^5\)
\(\Rightarrow5n=5\Rightarrow n=1\)
b)\(\left(2^3:4\right).2^n=4\Rightarrow\left(2^3:2^2\right).2^n=2^2\)
\(\Rightarrow2.2^n=2^2\Rightarrow2^{1+n}=2^2\)
\(\Rightarrow1+n=2\Rightarrow n=1\)
c)\(3^2.3^4.3^n=3^7\Rightarrow3^{6+n}=3^7\)
\(\Rightarrow6+n=7\Rightarrow n=1\)
d)\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n\left(2^{-1}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n\left(\frac{1}{2}+4\right)=3^2.2^5\)
\(\Rightarrow\)\(2^n.\frac{3^2}{2}=3^2.2^5\)
\(\Rightarrow\)\(2^{n-1}.3^2=3^2.2^5\)
\(\Rightarrow n-1=5\Rightarrow n=6\)
e)\(243\ge3^n\ge9.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^2.3^2\)
\(\Rightarrow3^5\ge3^n\ge3^4\)
\(\Rightarrow5\ge n\ge4\Rightarrow5;4\)
f)\(2^{n+3}.2^n=128\)
\(\Rightarrow2^{n+3+n}=2^7\)
\(\Rightarrow2^{2n+3}=2^7\)
\(\Rightarrow2n+3=7\Rightarrow2n=4\Rightarrow n=2\)
Hok tối
a) ta có:
\(n^2+1⋮n+1\)
\(\Rightarrow\left(n^2-1\right)+2⋮n+1\)
\(\Rightarrow\left(n-1\right)\left(n+1\right)+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2\right\}\)
\(\Rightarrow x\in\left\{-2;0;-3;1\right\}\)
\(\frac{1}{2}.2^n+4.2^n=9.2^5\Rightarrow2^n\left(\frac{1}{2}+4\right)=288\Rightarrow2^n.\frac{9}{2}=288\Rightarrow2^{n-2}.9=288\Rightarrow2^{n-2}=32\)(dấu "=>" số 3 bn sửa thành 2n-1.9=288=>2n-1=32 nha)
=>2n-1=25=>n-1=5=>n=5+1=6
vậy......
~~~~~~~~~~~~~~~
Bài 2:
1: \(5^n+5^{n+2}=650\)
\(\Leftrightarrow5^n\cdot26=650\)
\(\Leftrightarrow5^n=25\)
hay x=2
2: \(32^{-n}\cdot16^n=1024\)
\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)
hay n=-10
13: \(9\cdot27^n=3^5\)
\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)
=>3n=3
hay n=1
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn
Bài đầu đơn giản rồi , tự tính nhé <3
Bài 2
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)⋮10\)
Vậy.....
Đề yêu cầu chứng tỏ \(3^{n+2}-2^{n+4}+3^n+2^n⋮30\forall n\) nguyên dương à bạn?
\(3^{n+2}-2^{n+4}+3^n+2^n\)
\(=3^n.9-2^n.16+3^n+2^n\)
\(=\left(3^n.9+3^n\right)+\left(2^n-2^n.16\right)\)
\(=3^n.10-15.2^n\)
Ta có:
\(\left\{{}\begin{matrix}3^n⋮3\\10⋮10\end{matrix}\right.\Rightarrow3^n.10⋮30\) (1)
\(\left\{{}\begin{matrix}15⋮15\\2^n⋮2\end{matrix}\right.\Rightarrow15.2^n⋮30\) (2)
Từ (1) và (2) \(\Rightarrow3^n.10-15.2^n⋮30\)
\(\Rightarrowđpcm.\)
\(1+1=3\)