K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2023

Đề yêu cầu chứng tỏ \(3^{n+2}-2^{n+4}+3^n+2^n⋮30\forall n\) nguyên dương à bạn?

\(3^{n+2}-2^{n+4}+3^n+2^n\)

\(=3^n.9-2^n.16+3^n+2^n\)

\(=\left(3^n.9+3^n\right)+\left(2^n-2^n.16\right)\)

\(=3^n.10-15.2^n\)

Ta có:

\(\left\{{}\begin{matrix}3^n⋮3\\10⋮10\end{matrix}\right.\Rightarrow3^n.10⋮30\) (1)

\(\left\{{}\begin{matrix}15⋮15\\2^n⋮2\end{matrix}\right.\Rightarrow15.2^n⋮30\) (2)

Từ (1) và (2) \(\Rightarrow3^n.10-15.2^n⋮30\)

\(\Rightarrowđpcm.\)

10 tháng 2 2023

\(1+1=3\)

Đề bài yêu cầu gì?

22 tháng 2 2019

Đặt \(A=2\cdot2^2+3\cdot2^3+.....+n\cdot2^n\)

\(\Rightarrow2A=2\cdot2^3+3\cdot2^4+....+n\cdot2^{n+1}\)

\(\Rightarrow2A-A=\left(2\cdot2^3-3\cdot2^3\right)+\left(3\cdot2^4-4\cdot2^4\right)+....+\left(\left(n-1\right)2^n-n\cdot2^n\right)+n\cdot2^{n+1}-2^3\)

\(\Rightarrow A=n\cdot2^{n+1}-2^3-\left(2^3+2^4+2^5+....+2^n\right)\)

Đặt \(B=2^3+2^4+...+2^n\)

\(\Rightarrow2B=2^4+2^5+...+2^{n+1}\)

\(\Rightarrow B=2^{n+1}-2^3\)

\(\Rightarrow A=n\cdot2^{n+1}-2^3-\left(2^{n+1}-2^3\right)\)

\(\Rightarrow A=2^{n+1}\left(n-1\right)\)

\(\Rightarrow2^{n+1}\left(n-1\right)=2^{n+31}\)

\(\Rightarrow n-1=2^{30}\)

\(\Rightarrow n=2^{30}+1\)