Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)(1)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\left(2\right)\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{16}{a+b+2c}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\le4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=16\)
\(\Leftrightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\) lien tiep la duoc
Chuc bn thanh cong
svác-xơ ngược dấu.
\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)
Tương tự
\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)
\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Cộng lại ta được:
\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)
Bạn tham khảo:
Câu hỏi của Phạm Vũ Trí Dũng - Toán lớp 8 | Học trực tuyến
Lớp 8 nên chắc biết Bunhiacopxki chứ. Nếu ko biết thì google.
Dùng Bunhiacopxki để chứng minh cái này: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\)
\(\ge\left(\sqrt{x}.\frac{a}{\sqrt{x}}+\sqrt{y}.\frac{b}{\sqrt{y}}+\sqrt{z}.\frac{c}{\sqrt{z}}\right)^2=\left(a+b+c\right)^2\)
hay\(\left(x+y+z\right)\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Áp dụng BĐT trên ta có:
\(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\left(a^2+b^2+c^2\right).\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Áp dụng BĐT Bunhiacopxki, ta có: \(\left(1.a+1.b+1.c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\ge\frac{1}{3}\)
Vậy BĐT được chứng minh
Từ giả thiết \(ab+bc+ca=2abc\)suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\)thì \(\hept{\begin{cases}x+y+z=2\\x,y,z>0\end{cases}}\)và bất đẳng thức cần chứng minh trở thành \(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)hay \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{1}{2}\)
Áp dụng bất đẳng thức Bunyakovsky dạng phân thức ta được \(\frac{x^3}{\left(y+z\right)^2}+\frac{y^3}{\left(z+x\right)^2}+\frac{z^3}{\left(x+y\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x\left(y+z\right)^2+y\left(z+x\right)^2+z\left(x+y\right)^2}\)\(=\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\)
Ta cần chứng minh\(\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz}\ge\frac{1}{2}\)\(\Leftrightarrow2\left(x^2+y^2+z^2\right)^2\ge x^2y+y^2x+x^2z+z^2x+y^2z+z^2y+6xyz\)
Thật vậy, theo một đánh giá quen thuộc ta có \(2\left(x^2+y^2+z^2\right)^2=2\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2\right)\)\(\ge\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\)
Mà ta lại có \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)=x^3+y^3+z^3+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y\)
Suy ra ta có \(\frac{2\left(x+y+z\right)^2\left(x^2+y^2+z^2\right)}{3}\ge\frac{4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)}{3}\)
Ta cần chỉ ra được \(4\left(x^3+y^3+z^3+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\right)\)\(\ge3\left(x^2y+y^2x+x^2z+z^2x+y^2z+yz^2+6xyz\right)\)
Hay\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)
Áp dụng bất đẳng thức Cauchy ta được \(4\left(x^3+y^3+z^3\right)\ge12xyz\); \(x^2y+y^2z+z^2x\ge3xyz\); \(xy^2+yz^2+zx^2\ge3xyz\)
Cộng theo vế các bất đẳng thức trên ta được\(4\left(x^3+y^3+z^3\right)+x^2y+y^2x+x^2z+z^2x+y^2z+yz^2\ge18xyz\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{2}\)
Do a ; b ; c \(\ge1>0\) , áp dụng BĐT Cô - si cho 2 số , ta được :
\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
=> BĐT được c/m
Áp dụng BĐT trên vào bài toán , ta có :
\(\frac{1}{2a-1}+1\ge\frac{4}{2a-1+1}=\frac{2}{a}\left(1\right)\)
Tương tự : \(\frac{1}{2b-1}+1\ge\frac{2}{b};\frac{1}{2c-1}+1\ge\frac{2}{c}\left(2\right)\)
Từ ( 1 ) ; ( 2 ) , ta có : \(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\left(3\right)\)
Tiếp tục áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ( đã c/m ) , ta có :
\(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{a}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\left(4\right)\)
Từ ( 3 ) ; ( 4 ) \(\Rightarrow\) đpcm
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2a-1=1\\2b-1=1\\2c-1=1;a=b=c\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=1\)
Vậy ...
Áp dụng bđt Cauchy-Schwarz:
\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c
\(\frac{a^4}{a^3+2b^3}=a-\frac{2ab^3}{a^3+b^3+b^3}\ge a-\frac{2ab^3}{3\sqrt[3]{a^3.b^3.b^3}}=a-\frac{2}{3}b\)
Tương tự ta có
\(\frac{b^4}{b^3+2c^3}\ge b-\frac{2}{3}c\) ; \(\frac{c^4}{c^3+2d^3}\ge c-\frac{2}{3}d\) ; \(\frac{d^4}{d^3+2a^3}\ge d-\frac{2}{3}a\)
Cộng vế với vế:
\(VT\ge a+b+c+d-\frac{2}{3}\left(a+b+c+d\right)=\frac{a+b+c+d}{3}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
Sử dụng giả thiết \(a^2+b^2+c^2=3\), ta được: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)\(\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)
Tương tự, ta được: \(\frac{b^2c^2+7}{\left(b+c\right)^2}\ge1+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}\); \(\frac{c^2a^2+7}{\left(c+a\right)^2}\ge1+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\)
Ta quy bài toán về chứng minh bất đẳng thức: \(\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}+\frac{b^2+c^2+2a^2}{\left(b+c\right)^2}+\frac{c^2+a^2+2b^2}{\left(c+a\right)^2}\ge3\)
Áp dụng bất đẳng thức Cauchy ta được \(\Sigma_{cyc}\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\ge3\sqrt[3]{\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)
Áp dụng bất đẳng thức quen thuộc \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)ta được: \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\ge\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
Mặt khác ta lại có
\(4\left(a^2+b^2\right)\left(b^2+c^2\right)\le\left(2b^2+c^2+a^2\right)^2\)(1) ; \(4\left(b^2+c^2\right)\left(c^2+a^2\right)\le\left(2c^2+a^2+b^2\right)^2\)(2);\(4\left(c^2+a^2\right)\left(a^2+b^2\right)\le\left(2a^2+b^2+c^2\right)^2\)(3) (Theo BĐT \(4xy\le\left(x+y\right)^2\))
Nhân theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(64\left(a^2+b^2\right)^2\left(b^2+c^2\right)^2\left(c^2+a^2\right)^2\)\(\le\left(2a^2+b^2+c^2\right)^2\left(2b^2+c^2+a^2\right)^2\left(2c^2+a^2+b^2\right)^2\)
hay \(8\left(a^2+b^2\right)\left(b^2+c^2\right)\left(c^2+a^2\right)\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)
Từ đó dẫn đến \(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)\(\le\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)\)
Suy ra \(\frac{\left(2a^2+b^2+c^2\right)\left(2b^2+c^2+a^2\right)\left(2c^2+a^2+b^2\right)}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}\ge1\)
Vậy bất đẳng thức trên được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Áp dụng bđt Caucy Schwarz dạng Engel ta có:
\(\frac{4}{a+2b+c}+\frac{4}{2a+b+c}+\frac{4}{a+b+2c}=\) \(\frac{2^2}{a+2b+c}+\frac{2^2}{2a+b+c}+\frac{2^2}{a+b+2c}\ge^{ }\)\(\frac{\left(2+2+2\right)^2}{\left(a+2b+c\right)+\left(2a+b+C\right)+\left(a+b+2c\right)}\)=\(\frac{6^2}{4\left(a+b+c\right)}\) \(\frac{9}{a+b+c}\)(đpcm)
Thêm chữ "h" vào giữa chữ "c" và "y" chỗ áp dụng ... ấy