Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopkxy:
\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)
\(=[a(a+b+c)]^2\)
\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:
\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
1.
\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)
\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
Dấu "=" khi \(a=b=c\)
2.
\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" khi \(a=b=c=d\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)
\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)
\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)
\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)
a,b,c > 0 nên 2a + b >0; 2b + c > 0; 2c + a > 0
Áp dụng BĐT Cauchy- schwarz:
\(VT=\text{Σ}_{cyc}\frac{1}{2a+b}\ge\frac{9}{3\left(a+b+c\right)}=\frac{3}{a+b+c}\)
Dấu "=" xảy ra khi a = b = c
\(\frac{a^3}{bc}+\frac{b^3}{ca}=\frac{a^4}{abc}+\frac{b^4}{abc}\ge\frac{\left(a^2+b^2\right)^2}{2abc}\ge\frac{2ab\left(a^2+b^2\right)}{2abc}=\frac{a^2+b^2}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
viết các bđt tương tự rồi cộng vế theo vế là được
Cho a,b,c>0.Chung minh rang \(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\)
Ta có:
\(\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[\left(b+2c\right)+\left(c+2a\right)+\left(a+2b\right)\right]\)
\(\ge\left[\sqrt{\frac{a^2}{b+2c}.\left(b+2\right)}+\sqrt{\frac{b^2}{c+2a}.\left(c+2a\right)}+\sqrt{\frac{c^2}{a+2b}.\left(a+2b\right)}\right]^2\)
\(=\left(a+b+c\right)^2\)
\(\Rightarrow\left(\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\right)\left[3\left(a+b+c\right)\right]\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{b+2c}+\frac{b^2}{c+2a}+\frac{c^2}{a+2b}\ge\frac{a+b+c}{3}\left(đpcm\right)\)
<=> \(\frac{b+c-a}{2a}+1+\frac{a-b+c}{2b}+1+\frac{a+b-c}{2c}+1\ge\frac{3}{2}+3\)
<=> \(\frac{a+b+c}{2c}+\frac{a+b+c}{2b}+\frac{a+b+c}{2c}\ge\frac{9}{2}\)
<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=> \(\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\ge9\)
<=> \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge6\)
Ap dung bdt \(\frac{a}{b}+\frac{b}{a}\ge2\)
Suy ra ve trai >= 2.3=6=ve phai
=> DPCM
Dau = xay ra <=> a=b=c
mik phai di hoc nen tra loi tat mong ban thong cam
Lớp 8 nên chắc biết Bunhiacopxki chứ. Nếu ko biết thì google.
Dùng Bunhiacopxki để chứng minh cái này: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\)
\(\ge\left(\sqrt{x}.\frac{a}{\sqrt{x}}+\sqrt{y}.\frac{b}{\sqrt{y}}+\sqrt{z}.\frac{c}{\sqrt{z}}\right)^2=\left(a+b+c\right)^2\)
hay\(\left(x+y+z\right)\left(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)
Áp dụng BĐT trên ta có:
\(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\left(a^2+b^2+c^2\right).\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
Áp dụng BĐT Bunhiacopxki, ta có: \(\left(1.a+1.b+1.c\right)^2\le\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\ge\frac{1}{3}\)
Vậy BĐT được chứng minh