\(3\sqrt{x-1}+4\sqrt{y-1}=5\)

GTNN của biểu thức P=x+y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2017

Lời giải:

Áp dụng BĐT Bunhiacopxki ta có:

\(25=(3\sqrt{x-1}+4\sqrt{y-1})^2\leq (3^2+4^2)(x-1+y-1)\)

\(\Leftrightarrow 25\leq 25(x+y-2)\Leftrightarrow x+y\geq 3\)

Do đó \((x+y)_{\min}=3\)

Dấu bằng xảy ra khi \((x,y)=\left(\frac{34}{25},\frac{41}{25}\right)\)

4 tháng 3 2017

cám ơn bạn nhìu nha

1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\) 2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\) 3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\) 4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr:...
Đọc tiếp

1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)

2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)

3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)

4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)

5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)

6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).

7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).

8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).

9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).

10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.

11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).

12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).

13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)

Mn làm giúp mk với. Mk đang cần gấp

15
AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Bài 1:

Áp dụng BĐT AM-GM:

\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)

\(\Rightarrow 4\leq x+y\)

Tiếp tục áp dụng BĐT AM-GM:

\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)

\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)

\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)

Mà:

\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)

\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)

\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)

Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Bài 2:

\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)

\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)

\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)

\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)

\(\Rightarrow B\geq 24\)

Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)

8 tháng 5 2020

giúp mik vs cảm ơn mn

30 tháng 5 2020

Ta có: \(3\sqrt{x+2y-1}=\sqrt{9\left(x+2y-1\right)}\le\frac{9+x+2y-1}{2}\)

\(=\frac{x+2y}{2}+4\Leftrightarrow3\sqrt{x+2y-1}-4\le\frac{x+2y}{2}\)(1)

Tương tự ta có: \(3\sqrt{y+2z-1}\le\frac{y+2z}{2}\left(2\right);3\sqrt{z+2x-1}\le\frac{z+2x}{2}\left(3\right)\)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(T=\frac{x}{3\sqrt{x+2y-1}-4}+\frac{y}{3\sqrt{y+2z-1}-4}+\frac{z}{3\sqrt{z+2x-1}-4}\)

\(\ge\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)\(=2\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2zx}\right)\)

\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}=2.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=2\)(Theo BĐT Bunhiacopxki dạng phân thức)

Đẳng thức xảy ra khi \(x=y=z=\frac{10}{3}\)

27 tháng 2 2020

ai đó trả lời câu hỏi này đi

29 tháng 12 2019

2. Áp dụng bđt \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) :

\(B=\frac{x}{x+x+y+z}+\frac{y}{x+y+y+z}+\frac{z}{x+y+z+z}\) \(=x\cdot\frac{1}{\left(x+y\right)+\left(x+z\right)}+y\cdot\frac{1}{\left(x+y\right)+\left(y+z\right)}+z\cdot\frac{1}{\left(x+z\right)+\left(y+z\right)}\)

\(\le\frac{1}{4}\cdot x\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{1}{4}y\left(\frac{1}{x+y}+\frac{1}{y+z}\right)+\frac{1}{4}z\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow B\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{y+z}+\frac{x}{x+z}+\frac{z}{x+z}\right)=\frac{3}{4}\)

Dấu "=" \(\Leftrightarrow x=y=z=\frac{1}{3}\)

29 tháng 12 2019

Giải hộ mình với mn

13 tháng 7 2018

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow x=y\)

\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)

16 tháng 7 2018

Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\)  lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????

15 tháng 8 2018

Bài 1 : ĐK : \(x>3\) ; \(y>5\) ; \(z>4\)

\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)

\(\Leftrightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\left\{{}\begin{matrix}\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\dfrac{4\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{4}=4\\\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge2\sqrt{\dfrac{9\sqrt{y-5}}{\sqrt{y-5}}}=2\sqrt{9}=6\\\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge2\sqrt{\dfrac{25\sqrt{z-4}}{\sqrt{z-4}}}=2\sqrt{25}=10\end{matrix}\right.\)

\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)\ge20\)

\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=4\\y-5=9\\z-4=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=14\\z=29\end{matrix}\right.\left(TM\right)\)

Vậy \(x=7\) ; \(y=14\) ; \(z=29\)

16 tháng 11 2016

Bài 1:

\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)

\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)

Dấu = khi \(x=\sqrt{\frac{3}{2}}\)

Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v