\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Bài 1 : ĐK : \(x>3\) ; \(y>5\) ; \(z>4\)

\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)

\(\Leftrightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\left\{{}\begin{matrix}\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\dfrac{4\sqrt{x-3}}{\sqrt{x-3}}}=2\sqrt{4}=4\\\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge2\sqrt{\dfrac{9\sqrt{y-5}}{\sqrt{y-5}}}=2\sqrt{9}=6\\\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge2\sqrt{\dfrac{25\sqrt{z-4}}{\sqrt{z-4}}}=2\sqrt{25}=10\end{matrix}\right.\)

\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)\ge20\)

\(\Rightarrow\left(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\right)+\left(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\right)+\left(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\right)=20\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=4\\y-5=9\\z-4=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=14\\z=29\end{matrix}\right.\left(TM\right)\)

Vậy \(x=7\) ; \(y=14\) ; \(z=29\)

27 tháng 1 2018

bài 3:

a, đặt x12=y9=z5=kx12=y9=z5=k

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: x5=y7=z3=x225=y249=z29x5=y7=z3=x225=y249=z29

A/D tính chất dãy tỉ số bằng nhau ta có:

x5=y7=z3=x225=y249=z29=x2+y2z225+499=58565=9x5=y7=z3=x225=y249=z29=x2+y2−z225+49−9=58565=9

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

Câu a :

Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)

\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)

\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)

\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)

\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)

\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)

\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)

\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)

\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)

\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)

Bạn tự rút gọn nữa nhé :))

Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)

\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)

\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được. a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\) bài 2: tính giá trị các biểu thức sau: a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b)...
Đọc tiếp

bài 1 :Trục căn thức ở mẫu và rút ngọn nếu được.

a) \(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\) b) \(\dfrac{26}{5-2\sqrt{3}}\) c) \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\)

d) \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}\) g) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\dfrac{\sqrt{3}}{\sqrt{\sqrt{3}+1+1}}\)

bài 2: tính giá trị các biểu thức sau:

a)\(\dfrac{2}{\sqrt{7}-5}-\dfrac{2}{\sqrt{7}+5}\) b) \(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}-\sqrt{5}}\)

c) \(\sqrt{12}+\sqrt{48}-\sqrt{(\sqrt{75}-\sqrt{108)}^2}\)

bài 3: thực hiện phép tính.

a) \(\sqrt{(3-2\sqrt{2})^2}+\sqrt{(3+2\sqrt{2})^2}\) b)\(\sqrt{(5-2\sqrt{6})^2}-\sqrt{(5+2\sqrt{6})^2}\)

c) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\) d) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

bài 4: thực hiện các phép tính sau.

a) \(\sqrt{125}-4\sqrt{45}+3\sqrt{20}-\sqrt{80}\) b) \(2\sqrt{\dfrac{27}{4}}-\sqrt{\dfrac{48}{9}}\dfrac{2}{5}\sqrt{\dfrac{75}{16}}\)

c) \(\sqrt{8}+\sqrt{72}+\sqrt{98}-5\sqrt{128}\) d) \(2\sqrt{\dfrac{9}{8}}-\sqrt{\dfrac{49}{2}}+\sqrt{\dfrac{25}{18}}\)

bài 5: rút ngọn biểu thức với giả thiết các biểu thức chữ đều có nghĩa.

a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}(x>0;y>0)\)

b) \(\dfrac{a+\sqrt{ab}}{b+\sqrt{ab}}(a;b\ge0)\)

bài 6: giải các phương trình sau:\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

2
7 tháng 8 2018

mn ơi giải giúp mik bài não cũng đc a

mình cảm ơn mn nhiều ạ =))

7 tháng 8 2018

tớ nghĩ tớ giải đc 1-2 bài gì đó nhưng tớ ko bít bấm can lm sao giải cho cậu đc

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)

1 tháng 8 2018

3) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{4x-20}=4\)

\(\Leftrightarrow4x-20=16\)

\(\Leftrightarrow4x=36\)

\(\Leftrightarrow x=9\)

vậy ...

2 tháng 8 2018

1)

\(A=\dfrac{\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}\right)^2-2^2}\\ A=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{1}{\sqrt{x}+2}\)

\(B=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{x^2-2x\sqrt{2}+\left(\sqrt{2}\right)^2}{x^2-\sqrt{2}}\\ B=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{\left(x-\sqrt{2}\right)}{\left(x+\sqrt{2}\right)}\)

\(C=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+\left(\sqrt{5}\right)^2}\\ C=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

\(D=\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}=\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)}{2\sqrt{a}-1}=\sqrt{a}\)

\(E=\dfrac{x^2-2}{x-\sqrt{2}}=\dfrac{x^2-\left(\sqrt{2}\right)^2}{x-\sqrt{2}}\\ E=\dfrac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=x+\sqrt{2}\)

\(F=\dfrac{\sqrt{x}-3}{x-9}=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}\right)^2-3^2}\\ F=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ F=\dfrac{1}{\sqrt{x}+3}\)

26 tháng 6 2018

b) \(\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\sqrt{x-3}-\sqrt{y-1}-\sqrt{z-665}\) (*)

Đk: \(\left\{{}\begin{matrix}x>3\\y>1\\z>665\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}=82-\dfrac{x-3}{\sqrt{x-3}}-\dfrac{y-1}{\sqrt{y-1}}-\dfrac{z-665}{\sqrt{z-665}}\)

\(\Leftrightarrow\dfrac{16}{\sqrt{x-3}}+\dfrac{4}{\sqrt{y-1}}+\dfrac{1225}{\sqrt{z-665}}-82+\dfrac{x-3}{\sqrt{x-3}}+\dfrac{y-1}{\sqrt{y-1}}+\dfrac{z-665}{\sqrt{z-665}}=0\)

\(\Leftrightarrow\left(\dfrac{x-3}{\sqrt{x-3}}-\dfrac{8\sqrt{x-3}}{\sqrt{x-3}}+\dfrac{16}{\sqrt{x-3}}\right)+\left(\dfrac{y-1}{\sqrt{y-1}}-\dfrac{4\sqrt{y-1}}{\sqrt{y-1}}+\dfrac{4}{\sqrt{y-1}}\right)+\left(\dfrac{z-665}{\sqrt{z-665}}-\dfrac{70\sqrt{z-665}}{\sqrt{z-665}}+\dfrac{1225}{\sqrt{z-665}}\right)=0\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x-3}-4\right)^2}{\sqrt{x-3}}+\dfrac{\left(\sqrt{y-1}-2\right)^2}{\sqrt{y-1}}+\dfrac{\left(\sqrt{z-665}-35\right)^2}{\sqrt{z-665}}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-3}-4=0\\\sqrt{y-1}-2=0\\\sqrt{z-665}-35=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=19\\y=5\\z=1890\end{matrix}\right.\)

Kl: x=19, y= 5, z=1890

26 tháng 6 2018

c) \(\sqrt{x-5}-\dfrac{x-14}{3+\sqrt{x-5}}=3\) (*)

Đk: \(x\ge5\)

(*) \(\Leftrightarrow3\sqrt{x-5}+x-5-x+14=9+3\sqrt{x-5}\)

\(\Leftrightarrow0x=0\) (luôn đúng)

Vậy nghiệm của phương trình (*) là \(x\ge5\)

23 tháng 10 2018

18 thì có thể làm 20 thì chịu