Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a + b > 2
<=> a > 2 - b
<=> a^3 > (2 - b)^3
<=> a^3 > 8 - 12b + 6b^2 - b^3
<=> a^3 + b^3 > 8 - 12b + 6b^2
<=> 2 > 8 - 12b + 6b^2
<=> 0 > 8 - 2 -12b + 6b^2
<=> 0 > 6 + 6b^2 -12b
<=> 0 > 1 - 2b + b^2 ( vô lí )
Vậy a + b \(\le\)2 ( dấu bằng xảy ra khi a=b=1)
Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).
Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]\)
\(\ge\left(a+b\right)\left[\left(a+b\right)^2-\frac{3\left(a+b\right)^2}{4}\right]=\frac{\left(a+b\right)^3}{4}\)
\(\Rightarrow2\ge\frac{\left(a+b\right)^3}{4}\Rightarrow a+b\le2\)
a2≤ 2a2 ; b2≤ 2b2
=> a2 + b2 ≤ 2a2 + 2b2 ( = 2 ( a2 + b2 ) )
\(\left(a^2+b^2\right)\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2-2a^2-2b^2\le0\)
\(\Leftrightarrow-a^2-b^2\le0\)
\(\Leftrightarrow-\left(a^2+b^2\right)\le0\)
Vì \(a^2+b^2\ge0\Rightarrow-\left(a^2+b^2\right)\le0\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=0\)
Có: \(-\left(a-b\right)^2\le0\) với mọi x
=> \(-a^2+2ab-b^2\le0\)
=>\(a^2+2ab+b^2\le2a^2+2b^2\) (cộng cả 2 vế với \(2a^2;2b^2\))
=>\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow-\left(a^2-2ab+b^2\right)\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\)
dấu "=" xẩy ra khi và chỉ khi a=b
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\)\(\left(a+b\right)^2\le2.2=4\) (do \(a^2+b^2\le2\))
\(\Leftrightarrow\)\(a+b\le\sqrt{4}=2\) (đpcm)
p/s: tham khảo ạ. mk ko giám đảm bảo