Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
\(a,\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a-b\right)^2+4ab\left(đpcm\right)\)
a) \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn dương)
b) \(x^2-x+\frac{1}{2}=x^2-x+\frac{1}{4}+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2+\frac{1}{4}>0\)(luôn dương)
1, a^2 - 4b^2
= a^2 - (2b)^2
=(a-2b)(a+2b)
2, 1/4 a^2 - b^2
=(1/2a)^2 -b^2
=(1/2a-b)(1/2a+b)
3, (a-2b)^2 - (3a+b)^2
= (a-2b-3a-b)(a-2b+3a+b)
= (-2a-3b)(4a-b)
#)Giải :
\(a^2+b^2\le1+ab\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\left(a^3+b^3=a^5+b^5\right)\)
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)
\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)
\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)( luôn đúng \(\forall a;b>0\))
Vậy \(a^2+b^2\le1+ab\left(đpcm\right)\)
P/s : Bài này mk tham khảo trên mạng ( tại thấy rảnh nên chép hộ ^^ )
a) \(\left(x+y\right)^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-\left(x-y\right)^3-2y^3\)
\(=x^3+3x^2y+3xy^2+y^3-\left(x^3-3x^2y+3xy^2-y^3\right)-2y^3\)
\(=x^3+3x^3y+3xy^3+y^3-x^3+3x^2y-3xy^2+y^3-2y^3\)
\(=6x^2y\)
b) \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=a^3-3a^2b+3ab^2-b^3+\left(b-c\right)^3+\left(c-b\right)^3\)
\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3ab^2-c^3+\left(c-d\right)^3\)
\(=a^3-3a^3b+3ab^2-b^3+b^3-3b^3c+3bc^2-c^3+c^3-3c^3b+3cb^3-b^3\)
\(=-b^3+3ab^2-3a^2b+a^3\)
Mọi người giúp mk với nha, bữa trước mk đi chơi hè về nên bỏ qua bài này về lý thuyết nên chẳng hiểu gì cả, các bạn giúp mk giải và giảng cũng như chú thích các bước làm và ứng dụng hằng đẳng thức nào để giúp mk hiểu bài hơn và hoàn thành bài tập về nhà với nha, mk xin cảm ơn trước và nếu các bạn làm đúng thì mk sẽ k đúng và kết bạn với các bạn nha!
Hihihi!!!^_^ Mong các bạn giúp đỡ mk!!!!!!!!!!!!!!!
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
Ta có: \(\frac{a+b}{2}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\Leftrightarrow\frac{a+b}{2}\ge\frac{2}{\frac{a+b}{ab}}\)
\(\Leftrightarrow\frac{a+b}{2}\ge\frac{2ab}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\)*đúng*
Đẳng thức xảy ra khi a = b