Bằng những hiểu biết của mình về mức độ nguy hiểm của dòng điện, hãy nêu những giải pháp cơ bản để phòng tránh tai nạn về điện.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- \(m=0\)dễ thấy không thỏa mãn.
- \(m\ne0\):
\(\Delta'=\left(m-1\right)^2-3\left(m-2\right).m=-2m^2+4m+1\)
Để phương trình đã cho có hai nghiệm \(x_1,x_2\)thì \(\Delta'\ge0\Rightarrow-2m^2+4m+1\ge0\).
Khi phương trình có hai nghiệm \(x_1,x_2\), theo Viete ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2\left(m-1\right)}{m}\\x_1x_2=\frac{3\left(m-2\right)}{m}\end{cases}}\)
Ta có: \(x_1+2x_2=1\)
\(\Rightarrow\left(x_1+2x_2-1\right)\left(x_2+2x_1-1\right)=0\)
\(\Leftrightarrow5x_1x_2+2\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)+1=0\)
\(\Leftrightarrow2\left(x_1+x_2\right)^2-3\left(x_1+x_2\right)+x_1x_2+1=0\)
\(\Rightarrow2\left[\frac{2\left(m-1\right)}{m}\right]^2-\frac{6\left(m-1\right)}{m}+\frac{3\left(m-2\right)}{m}+1=0\)
\(\Leftrightarrow8\left(m-1\right)^2-6m\left(m-1\right)+3m\left(m-2\right)+m^2=0\)
\(\Leftrightarrow6m^2-16m+8=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{2}{3}\end{cases}}\)
Thử lại đều thỏa mãn.
ta có \(\frac{a}{1+b-a}+a\left(1+b-a\right)\ge2a\)hay \(\frac{a}{1+b-a}\ge a\left(1+a-b\right)=a\left(2a+c\right)\)
tương tự ta sẽ có :
\(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge2a^2+2b^2+2c^2+ab+ac+bc\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)+\frac{1}{2}\left(a^2+b^2+c^2+2ab+2bc+2ac\right)\ge\frac{1}{2}\left(a+b+c\right)^2+\frac{1}{2}\left(a+b+c\right)^2\)
\(\ge\left(a+b+c\right)^2=1\)
vậy ta có điều phải chứng minh
dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)
vì bạn muốn làm bằng BDT Bunhia nên mình làm cách đó nhé :
ta có : \(\left[a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)\right]\left(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\right)\)
\(\ge\left(a+b+c\right)^2=1\) ( áp dụng Bunhia )
nên ta có : \(VT\ge\frac{1}{a\left(1+b-a\right)+b\left(1+c-b\right)+c\left(1+a-c\right)}=\frac{1}{a\left(2b+c\right)+b\left(2c+a\right)+c\left(2a+c\right)}\)
\(\ge\frac{1}{3\left(ab+bc+ca\right)}\) mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
nên ta có : \(VT\ge\frac{1}{3\times\frac{1}{3}}=1=VP\) vậy ta có đpcm
Điều kiện : \(-4< x< 1\)
\(\sqrt{1-x}=3-\sqrt{4+x}\)
\(1-x=9+4+x-6\sqrt{4+x}\)
\(0=12+2x-6\sqrt{4+x}\)
\(6+x=3\sqrt{4+x}\)
\(36+12x+x^2=9\left(4+x\right)\)
\(x^2+3x=0\)
\(x\left(x+3\right)=0\)
\(\hept{\begin{cases}x=0\left(tm\right)\\x=-3\left(tm\right)\end{cases}}\)
Vậy \(S=\hept{\begin{cases}x=0\\x=-3\end{cases}}\)
Mình biết 1 phương pháp không cần biết độ dài các cạnh của đa giác nhưng vẫn tính được diện tích đa giác như sau:
Giả sử đó là tứ giác (tam giác và các đa giác có số cạnh \(n\ge5\)cũng làm tương tự)
Gọi 4 đỉnh của tứ giác là A, B, C, D
Vẽ hệ trục tọa độ Oxy bất kì (tốt nhất lá gốc tọa độ nên nằm trong đa giác)
Xác định tọa độ của A, B, C, D, lập bảng tọa độ của các điểm và liệt kê các điểm theo chiều ngược chiều kim đồng hồ và viết lại điểm đầu tiên 1 lần nữa, giả sử ta xác định được như sau:
Điểm | x | y |
A | \(x_A\) | \(y_A\) |
D | \(x_D\) | \(y_D\) |
C | \(x_C\) | \(y_C\) |
B | \(x_B\) | \(y_B\) |
A | \(x_A\) | \(y_A\) |
Tính giá trị của \(x_Ay_D+x_Dy_C+x_Cy_B+x_By_A-x_Dy_A-x_Cy_D-x_By_C-x_Ay_B\)rồi chia KQ cho 2, ta được diện tích đa giác.
Vừa nói xong, lớp 7 đã khó lại còn lớp 8, lớp 8 đã khó nay lại là lớp 9. Muốn thiếp lâm sàn ngay tại chỗ quá đi mất thôi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=2019\)
\(\Rightarrow\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)
\(=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\)\(\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(cô -si)
\(\Rightarrow\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le\frac{x^2+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}\)\(=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự ta có: \(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
và \(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Cộng từng vế của các bđt trên, ta được:
\(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019.3\left(xy+yz+zx\right)}{2019xyz}\)
\(\le\frac{2019\left(x+y+z\right)^2}{x+y+z}=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020.2019xyz\)
Vậy \(\text{Σ}_{cyc}\frac{x^2+1+\sqrt{2019x^2+1}}{x}\le2019.2020xyz\left(đpcm\right)\)
Theo bài ra ta có:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}=\frac{x+y+z}{xyz}=2019\)
\(\Rightarrow x+y+z=2019xyz\)
\(\Rightarrow2019x^2=\frac{x^2+xy+xz}{yz}\)
\(\Rightarrow2019x^2+1=\frac{x^2+xy+xz+yz}{yz}=\frac{\left(x+y\right)\left(x+z\right)}{yz}=\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)\)
\(\Rightarrow\sqrt{2019x^2+1}=\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}\le\frac{1}{2}\left(\frac{x}{y}+\frac{x}{z}+2\right)=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)(Theo BĐT Cosi)
\(\Rightarrow\frac{x^2+1+\sqrt{2019^2+1}}{x}\le\frac{x+1+1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=x+\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)
Tương tự:
\(\frac{y^2+1+\sqrt{2019y^2+1}}{y}\le y+\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\frac{z^2+1+\sqrt{2019z^2+1}}{z}\le z+\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow VT\le x+y+z+3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Chứng minh được: \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{2019\cdot3\left(xy+yz+zx\right)}{2019xyz}\le\frac{2019\left(x+y+z\right)^2}{x+y+z}\)\(=2019\left(x+y+z\right)\)
\(\Rightarrow VT\le2020\left(x+y+z\right)=2020\cdot2019xyz=VP\)
=> ĐPCM
Vì \(65\) là số lẻ nên \(2x+5y+1\) và \(2^{\left|x\right|-1}+y+x^2+x\) cũng là số lẻ.
mà \(2x+1\)lẻ
\(\Rightarrow\)\(5y\) là số chẵn
\(\Rightarrow\)\(y\) là số chắn
Có \(2^{\left|x\right|-1}+x^2+x\)là só lẻ mà \(x^2+x=x\left(x+1\right)\) là tích 2 số tự nhiên liên tiếp nên là số chắn, \(y\) cũng là số chẵn
\(\Rightarrow\)\(2^{\left|x\right|-1}\) là số lẻ
\(\Rightarrow\)\(x=\pm1\).
Với \(x=1\)ta có:
\(\left(5y+3\right)\left(y+3\right)=65\)
suy ra \(y=2\).
Tương tự với \(x=-1\)suy ra không có giá trị của \(y\)thỏa mãn.
Vậy ta có nghiệm \(\left(x,y\right)=\left(1,2\right)\).
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và 2|x|+y+x2+x2|x|+y+x2+x là số lẻ
<=> y chẵn và 2|x|+y+x(x+1)2|x|+y+x(x+1) là số lẻ
=> 2|x|2|x| là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> (5y+1)(1+y)=105(5y+1)(1+y)=105
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
Bài 2 , 3 mình đang suy nghĩ Làm tạm mấy bài sau trc.
Bài 4:
+) n4 co tận cùng là 1 , 6 , 5 => n8 - n4 chia hết cho 10 ( 1 )
+) n8 - n4 = n2 (n - 1 )( n + 1 )( n2 + 1 ) chia hết cho 3 và 4 ( 2 )
Từ ( 1 ) và ( 2 ) => ĐPCM
Bài 5 :
\(A=2005^n+60^n-1897^n-168^n\)
Ta có :
+) \(\hept{\begin{cases}2005^n\equiv1\left(mod4\right)\\1897^n\equiv1\left(mod4\right)\end{cases}}\)
\(\Rightarrow A\equiv1+0-1+0=0\left(mod4\right)\)
\(\Rightarrow A⋮4\)
+) \(\hept{\begin{cases}2005^n\equiv1\left(mod3\right)\\1897^n\equiv1\left(mod3\right)\end{cases}}\)
\(\Rightarrow A\equiv1+0-1+0=0\left(mod3\right)\)
\(\Rightarrow A⋮3\)
+) \(\hept{\begin{cases}2005^n\equiv1\left(mod167\right)\\1897^n\equiv1\left(mod167\right)\\168^n\equiv\left(mod167\right)\end{cases}}\)
\(\Rightarrow A\equiv1+60^n-60^n-1=0\left(mod167\right)\)
\(\Rightarrow A⋮2004\)
Bài 6 :
\(6^{2n}+19^n-2^{n-1}\)
\(=36^n+19^n-2.2^n\)
\(=\left(36^n-2^n\right)+\left(19^n-2^n\right)\)
Ta có : \(\hept{\begin{cases}36^n-2^n⋮34\\19^n-2^n⋮17\end{cases}\Rightarrow}6^{2n}+19^n-2^{n-1}\)
- Các biện pháp để phòng tránh tai nạn về điện:
+ Lựa chọn và sử dụng những thiết bị điện an toàn. Các loại như ổ cắm điện, thiết bị điện dụng… nên lựa chọn những sản phẩm chất lượng tốt, phù hợp với dòng điện của gia đình.
+ Thường xuyên kiểm tra các thiết bị, dây dẫn điện.
+ Đảm bảo chắc chắn là nguồn điện đã ngắt hoàn toàn trước khi lắp đặt sửa chữa điện dân dụng, điện lưới.
+ Tuân thủ tuyệt đối an toàn hành lang lưới điện. Giữ khoảng cách an toàn với đường dây điện cao áp và các trạm biến thế.
+ Không sử dụng dây điện trần làm đường dây dẫn điện.
+ Tìm hiểu những kiến thức về an toàn điện và cách xử lý khi xảy ra tai nạn điện giật.
+ Khi tay ướt không nên chạm tay vào các thiết bị điện.
TL: Không dùng dây nối bị hư hỏng
Không dùng thiết bị điện lỗi
Tắt đèn trước khi thay bóng mới
HT