K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 3 2019

1/Áp dụng công thức tổng cấp số nhân:

\(z=1+\left(1+i\right)+\left(1+i\right)^2+...+\left(1+i\right)^{20}=1+\frac{\left(1+i\right)^{21}-1}{i+1-1}=1+\frac{\left(1+i\right)^{21}-1}{i}\)

Ta có:

\(\left(1+i\right)^{21}=\left(1+i\right)\left[\left(1+i\right)^2\right]^{10}=\left(1+i\right)\left(1+2i+i^2\right)^{10}\)

\(=\left(1+i\right)\left(2i\right)^{10}=\left(1+i\right).2^{10}.i^{10}=\left(1+i\right)2^{10}\left(i^2\right)^5=-\left(1+i\right).2^{10}\)

\(\Rightarrow z=1+\frac{-\left(1+i\right)2^{10}-1}{i}=1+\frac{-i\left(1+i\right)2^{10}-i}{i^2}=1+\left(i+i^2\right)2^{10}+i=1+i+\left(i-1\right).2^{10}\)

\(\Rightarrow z=\left(1-2^{10}\right)+\left(1+2^{10}\right)i\)

2/

\(z=\left(3+i\sqrt{3}\right)^3\Rightarrow\frac{1}{z}=\frac{1}{\left(3+i\sqrt{3}\right)^3}=\frac{\left(3-i\sqrt{3}\right)^3}{\left(3+i\sqrt{3}\right)^3\left(3-i\sqrt{3}\right)^3}=\frac{\left(3-i\sqrt{3}\right)^3}{\left(9-3i^2\right)^3}\)

\(\Rightarrow\frac{1}{z}=\frac{\left(3-i\sqrt{3}\right)^3}{12^3}=\left(\frac{1}{4}-\frac{\sqrt{3}}{12}i\right)^3\)

3/ Bạn viết lại đề được không?

3 tháng 6 2019

Cảm ơn nhiều ạ! Mình làm được rồi ạ!

AH
Akai Haruma
Giáo viên
23 tháng 6 2018

Lời giải:

Nếu $z_1,z_2,z_3$ là 3 nghiệm phức của pt \(2x^3-3x-2=0\) thì theo định lý Vi-et ta có:

\(\left\{\begin{matrix} z_1+z_2+z_3=0\\ z_1z_2z_3=1\end{matrix}\right.\)

Kết hợp hệ phương trình trên với hằng đẳng thức:

\(z_1^3+z_2^3+z_3^3=(z_1+z_2)^3-3z_1z_2(z_1+z_2)+z_3^3\)

\(=(-z_3)^3-3z_1z_2(-z_3)+z_3^3=3z_1z_2z_3=3\)

Đáp án B

NV
2 tháng 5 2019

Bài 1:

\(y'=3\left(x+m\right)^2+3\left(x+n\right)^2-3x^2\)

\(y'=3\left(x^2+2mx+m^2\right)+3\left(x^2+2nx+n^2\right)-3x^2\)

\(y'=3\left(x^2+2\left(m+n\right)x+m^2+n^2\right)\)

Để hàm số đồng biến trên R \(\Leftrightarrow y'\ge0\) \(\forall x\in R\)

\(\Rightarrow\Delta'=\left(m+n\right)^2-\left(m^2+n^2\right)\le0\) \(\Rightarrow mn\le0\)

\(P=4\left(m+n\right)^2-\left(m+n\right)-8mn\ge4\left(m+n\right)^2-\left(m+n\right)\ge-\frac{1}{16}\)

Bài 2: Đề bài rất kì quặc

Mình nghĩ cách giải sẽ như sau: nhận thấy \(z=0\) ko phải nghiệm nên chia 2 vế cho \(z^3\):

\(z^3+2016z^2+2017z+2018+\frac{2017}{z}+\frac{2016}{z^2}+\frac{1}{z^3}=0\)

\(\Leftrightarrow z^3+\frac{1}{z^3}+2016\left(z^2+\frac{1}{z^2}\right)+2017\left(z+\frac{1}{z}\right)+2018=0\)

Đặt \(z+\frac{1}{z}=a\Rightarrow\left\{{}\begin{matrix}a^2=z^2+\frac{1}{z^2}+2\Rightarrow z^2+\frac{1}{z^2}=a^2-2\\a^3=z^3+\frac{1}{z^3}+3\left(z+\frac{1}{z}\right)\Rightarrow z^3+\frac{1}{z^3}=a^3-3a\end{matrix}\right.\)

\(\Rightarrow a^3-3a+2016\left(a^2-2\right)+2017a+2018=0\)

\(\Leftrightarrow a^3+2016a^2+2014a-2014=0\)

Đặt \(f\left(a\right)=a^3+2016a^2+2014a-2014\)

\(f\left(-2015\right)=1\) ; \(f\left(-2016\right)=...< 0\)

\(\Rightarrow f\left(-2015\right).f\left(-2016\right)< 0\Rightarrow\) phương trình luôn có ít nhất một nghiệm \(a_0\in\left(-2016;-2015\right)\)

Khi đó ta có: \(z+\frac{1}{z}=a_0\Rightarrow z^2-a_0z+1=0\)

\(\Delta=a_0^2-4>0\) do \(a_0\in\left(-2016;-2015\right)\) nên \(a_0^2>2015^2>4\)

\(\Rightarrow\) Phương trình đã cho có ít nhất 2 nghiệm thực nên ko thể có 6 nghiệm phức

\(\Rightarrow\) Đề bài sai :(

3 tháng 5 2019

Bài 2 mình dùng phương trình đối xứng ra được ko bạn ??

22 tháng 6 2019

Đáp án D

Đặt 

Khi đó 

Xét hàm số 

Khi đó 

NV
20 tháng 4 2019

Theo Viet: \(\left\{{}\begin{matrix}z_1+z_2=2i\\z_1z_2=-1-2i\end{matrix}\right.\)

\(\Rightarrow z_1^3+z_2^3=\left(z_1+z_2\right)\left(z_1^2+z_2^2-z_1z_2\right)=\left(z_1+z_2\right)\left(\left(z_1+z_2\right)^2-3z_1z_1\right)\)

\(=2i\left[\left(2i\right)^2-3\left(-1-2i\right)\right]=2i\left(6i-1\right)=-12-2i\)

16 tháng 10 2019

Đáp án B.

Ta có z = z' 

4 tháng 12 2019

Đáp án A