Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
– Xét m ≤ 0, phương trình y’ = 0 có nghiệm duy nhất x = 0.
Ta có bảng biến thiên :
Ta có bảng biến thiên :
Dựa vào bảng biến thiên phần b) ta có :
C m có cực đại, cực tiểu ⇔ m > 0
- Nếu m ≤ 0, phương trình y’ = 0 có nghiệm duy nhất x = 0.
Mà y’’(0) = 4m < 0
⇒ x = 0 là điểm cực đại và là cực trị duy nhất của hàm số.
- Nếu m > 0 thì phương trình (1) có 2 nghiệm phân biệt khác 0 nên phương trình y’= 0 có 3 nghiệm
⇒ hàm số có 3 cực trị.
y = x 4 – 2 x 2
y′ = 4 x 3 – 4x = 4x( x 2 – 1)
y′ = 0 ⇔
Bảng biến thiên:
Đồ thị
a) y = x 4 – 2 x 2
y′ = 4 x 3 – 4x = 4x( x 2 – 1)
y′ = 0 ⇔
Bảng biến thiên:
Đồ thị
b) y′ = 4 x 3 – 4mx = 4x( x 2 – m)
Để (Cm) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là phương trình y’ = 0 có hai nghiệm phân biệt khác 0 và y C T = 0.
+) Nếu m ≤ 0 thì x 2 – m ≥ 0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.
+) Nếu m > 0 thì y’ = 0 khi x = 0; x = m hoặc x = - m .
f(√m) = 0 ⇔ m 2 – 2 m 2 + m 3 – m 2 = 0 ⇔ m 2 (m – 2) = 0 ⇔ m = 2 (do m > 0)
Vậy m = 2 là giá trị cần tìm.
Với m = 0, hàm số trở thành:
- TXĐ: D = R \ {1}
- Sự biến thiên:
+ Chiều biến thiên:
⇒ Hàm số nghịch biến trên (-∞; 1) và (1; +∞).
+ Cực trị: Hàm số không có cực trị.
QUẢNG CÁO+ Tiệm cận:
⇒ x = 1 là tiệm cận đứng của đồ thị hàm số.
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên:
- Đồ thị:
+ Giao điểm với Ox: (-1; 0)
+ Giao điểm với Oy: (0; -1)
Chọn C
Hàm số có 3 cực trị ⇔ m > 0
Khi đó 3 điểm cực trị của đồ thị hàm số là
Do tính chất đối xứng, ta có ∆ A B C cân tại đỉnh A
Vậy ∆ A B C đều chỉ cần AB = BC
Kết hợp điều kiện ta có m = 3 3 (thỏa mãn)
Lưu ý: có thể sử dụng công thức b 3 8 a + 3 = 0
( - 2 m ) 3 8 + 3 = 0 ⇔ m 3 = 3 m ⇔ m = 3 3