K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;

Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2

Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12

Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.

Bảng biến thiên :

Đồ thị như hình bên.

23 tháng 5 2017

a) Hoành độ giao điểm của đồ thị hàm số \(y=\dfrac{2x+1}{2x-1}\)\(y=x+2\) là nghiệm của phương trình :

\(\dfrac{2x+1}{2x-1}=x+2\Leftrightarrow\dfrac{2x+1}{2x-1}-x-2=0\)

\(\Leftrightarrow\dfrac{-2x^2-x+3}{2x-1}=0\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x^2-x+3=0\\x\ne\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Với \(x=1\) thì \(y=1+2=3;x=-\dfrac{3}{2}\) thì \(y=-\dfrac{3}{2}+2=\dfrac{1}{2}\)

Vậy tọa độ hai giao điểm là \(A\left(1;3\right),B\left(-\dfrac{3}{2};\dfrac{1}{2}\right)\)

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

Hàm lũy thừa, mũ và loagrit

5 tháng 3 2018

Với m = 2 ta có hàm số Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Tập xác định : D = R\{-1}.

- Sự biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).

+ Cực trị : hàm số không có cực trị

+ Tiệm cận :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ y = 1 là tiệm cận ngang của đồ thị hàm số

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.

+ Bảng biến thiên :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 6 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

31 tháng 3 2017

a) Tập xác định : R ; y' =-4x3 + 16x = -4x(x2 - 4);

y' = 0 ⇔ x = 0, x = ±2 .

Bảng biến thiên :

Đồ thị như hình bên.

b) Tập xác định : R ; y' =4x3 - 4x = 4x(x2 - 1);

y' = 0 ⇔ x = 0, x = ±1 .

Bảng biến thiên :

Đồ thị như hình bên.

c) Tập xác định : R ; y' =2x3 + 2x = 2x(x2 + 1); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

d) Tập xác định : R ; y' = -4x - 4x3 = -4x(1 + x2); y' = 0 ⇔ x = 0.

Bảng biến thiên :

Đồ thị như hình bên.

.

19 tháng 9 2020

bn lm dài thế chi tiết nx mn tick cho bn này nè mk hok r nên bt

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số