Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) =-3/5 x (4/7 + 2/7 + 1) = -3/5 x 13/7 = -39/35
b) =8/11 x 5/19 + 7/19 x 8/11 - 8/11 x 1/15 = 8/11 x ( 5/19 + 7/19 - 1/15 ) = 8/11 x 161/285 = 1288/3235
**** cho mink nha
a) \(\frac{3}{5}.x-\frac{1}{5}=\frac{4}{5}\)
\(\Leftrightarrow\frac{3}{5}.x=\frac{4}{5}+\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{5}.x=1\)
\(\Leftrightarrow x=1:\frac{3}{5}\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy : \(x=\frac{5}{3}\)
b) \(\frac{4}{7}+\frac{5}{7}:x=1\)
\(\Leftrightarrow\frac{5}{7}:x=1-\frac{4}{7}\)
\(\Leftrightarrow\frac{5}{7}:x=\frac{3}{7}\)
\(\Leftrightarrow x=\frac{5}{7}:\frac{3}{7}\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy : \(x=\frac{5}{3}\)
c) \(-\frac{12}{7}.\left(\frac{3}{4}-x\right).\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{-12.1}{7.4}.\left(\frac{3}{4}-x\right)=-1\)
\(\Leftrightarrow-\frac{3}{7}.\left(\frac{3}{4}-x\right)=-1\)
\(\Leftrightarrow\frac{3}{4}-x=-1:\left(-\frac{3}{7}\right)\)
\(\Leftrightarrow\frac{3}{4}-x=\frac{7}{3}\)
\(\Leftrightarrow x=\frac{3}{4}-\frac{7}{3}=-\frac{19}{12}\)
Vậy : \(x=-\frac{19}{12}\)
d) \(x:\frac{17}{8}=-\frac{2}{5}.-\frac{9}{17}+3\)
\(\Leftrightarrow x:\frac{17}{8}=\frac{273}{85}\)
\(\Leftrightarrow x=\frac{273}{85}.\frac{17}{8}\)
\(\Leftrightarrow x=\frac{273}{40}\)
Vậy : \(x=\frac{273}{40}\)
\(\)
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
a) \(4\frac{5}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)=\frac{41}{9}:\left(-\frac{5}{7}\right)+\frac{49}{9}:\left(-\frac{5}{7}\right)\)
\(=\frac{41}{9}\cdot\left(-\frac{7}{5}\right)+\frac{49}{9}\cdot\left(-\frac{7}{5}\right)=\left(\frac{41}{9}+\frac{49}{9}\right)\cdot\left(-\frac{7}{5}\right)=10\cdot\left(-\frac{7}{5}\right)=-14\)
b) \(\left(\frac{-3}{5}+\frac{4}{9}\right):\frac{7}{11}+\left(\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{4}{9}+\frac{-2}{5}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(\frac{-3}{5}+\frac{-2}{5}+\frac{4}{9}+\frac{5}{9}\right):\frac{7}{11}\)
\(=\left(-1+1\right):\frac{7}{11}=0\cdot\frac{11}{7}=0\)
c) \(\left(\frac{3}{4}\right)^4\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\right)^2\cdot\left(\frac{3}{4}\right)^2\cdot\left(\frac{8}{9}\right)^2=\left(\frac{3}{4}\cdot\frac{3}{4}\cdot\frac{8}{9}\right)^2\)
\(=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)
d) \(\left(-\frac{3}{5}\right)^6\cdot\left(-\frac{5}{3}\right)^5=\left(-\frac{3}{5}\right)^5\cdot\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)^5=\left[\left(-\frac{3}{5}\right)\cdot\left(-\frac{5}{3}\right)\right]^5\cdot\left(-\frac{3}{5}\right)\)
\(=1^5\cdot\left(-\frac{3}{5}\right)=1\cdot\left(-\frac{3}{5}\right)=-\frac{3}{5}\)
e) \(\frac{8^{14}}{4^4\cdot64^5}=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^4\cdot\left(2^6\right)^5}=\frac{2^{42}}{2^8\cdot2^{30}}=\frac{2^{42}}{2^{38}}=2^4=16\)
f) \(\frac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\frac{\left(3^2\right)^{10}\cdot\left(3^3\right)^7}{\left(3^4\right)^7\cdot3^{15}}=\frac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\frac{3^{41}}{3^{43}}=3^{-2}=\frac{1}{3^2}=\frac{1}{9}\)
1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)
=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)
b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)
Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)
lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)
Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)
2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 4x = 8(20 + xy)
=> x = 2(20 + xy)
=> x = 40 + 2xy
=> x - 2xy = 40
=> x(1 - 2y) = 40
Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)
mà x(1 - 2y) = 40
=> 1 - 2y \(\inƯ\left(40\right)\)(2)
Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)
Nếu 1 - 2y = 1 => x = 40
=> y = 0 ; x = 40
Nếu 1 - 2y = 5 => x = 8
=> y = -2 ; x = 8
Nếu 1 - 2y = -1 => x = -40
=> y = 1 ; y = - 40
Nếu 1 - 2y = -5 => x = -8
=> y = 3 ; x =-8
Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)
4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)
b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)
\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)
\(=\frac{1}{4}+\frac{3}{4}=1\)
Bài làm :
a)\(=-\frac{3}{5}+\frac{28}{5}\times\frac{9}{14}=-\frac{3}{5}+\frac{18}{5}=3\)
b)\(=\frac{55}{126}+\frac{5}{42}+\frac{4}{9}=1\)
c)\(=-\frac{51}{13}-\frac{27}{13}=-6\)
d)\(=\frac{7}{3}-11\frac{1}{4}\times\frac{2}{15}=\frac{7}{3}-\frac{3}{2}=\frac{5}{6}\)
e)\(=1\times\frac{8}{3}\times0,25=\frac{2}{3}\)
=> 3/5y - 4/3 = 1
3/5y = 7/3
y = 35/9
=>3/5y-4/3=1
3/5y=7/3
y=35/9
tick nha