Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để \(y=\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}=1\)
thì \(\left(\sqrt{3}-\sqrt{5}\right)x=1-\sqrt{5}-\sqrt{3}\)
\(\Leftrightarrow x=\frac{1-\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}}\)
b.\(f^2\left(x\right)=\left[\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}\right]^2=8+2\sqrt{15}=\left(\sqrt{5}+\sqrt{3}\right)^2\)
\(\Leftrightarrow\left[\left(\sqrt{3}-\sqrt{5}\right)x+2\sqrt{5}+2\sqrt{3}\right]\left(\sqrt{3}-\sqrt{5}\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2\left(\sqrt{3}+\sqrt{5}\right)x}{\left(\sqrt{3}-\sqrt{5}\right)x}\end{cases}}\)
a) Ta có: \(A=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
b) Để \(A< -\dfrac{1}{3}\) thì \(A+\dfrac{1}{3}< 0\)
\(\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}< 0\)
\(\Leftrightarrow\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}< 0\)
\(\Leftrightarrow\sqrt{x}-6< 0\)
\(\Leftrightarrow x< 36\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 36\\x\ne9\end{matrix}\right.\)
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
Khi \(y=0\), ta có:
\(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1=0\)
\(\Leftrightarrow\left(3-2\sqrt{2}\right)x=1-\sqrt{2}\)
\(\Leftrightarrow x=\dfrac{1-\sqrt{2}}{3-2\sqrt{2}}\)
\(\Leftrightarrow x=-1-\sqrt{2}\)
Thay y=0 vào hàm số, ta được:
\(\left(3-\sqrt{2}\right)x+1=0\)
\(\Leftrightarrow x=\dfrac{-3-\sqrt{2}}{7}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
b) Ta có: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right)\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\)
\(=\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
d) Để A>0 thì \(\sqrt{x}-2>0\)
hay x>4
a) √(√3 - 2)² + √3
= 2 - √3 + √3
= 2
b) Để (d) và (d') cắt nhau thì:
m + 2 ≠ -2
m ≠ -2 - 2
m ≠ -4
Vậy m ≠ -4 thì (d) cắt (d')
c) Thay tọa độ điểm A(3; -1) vào (d) ta có:
(2m - 3).3 + m = -1
⇔ 6m - 9 + m = -1
⇔ 7m = -1 + 9
⇔ 7m = 8
⇔ m = 8/7 (nhận)
Thay m = 8/7 vào (d) ta có:
(d): y = -5x/7 - 8/7
Vậy hệ số góc của (d) là -5/7
Để y = 0 thì \(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1=0\)
\(\Leftrightarrow\left(\sqrt{2}-1\right)^2\cdot x+\left(\sqrt{2}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2}-1\right)\left[\left(\sqrt{2}-1\right)x+1\right]=0\)
\(\Leftrightarrow\left(\sqrt{2}-1\right)x+1=0\Leftrightarrow x=-\frac{1}{\sqrt{2}-1}=-1-\sqrt{2}\)