K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

câu 1:

khi Oy nằm giữa Oz và Ox,Oy nằm trên nửa mặt phẳng bờ chứa tia Ox

câu 2 ko hiểu đề

12 tháng 5 2016

sai roi

9 tháng 1 2016

nhanh len thoi gian co han thui nha

1) Thay x=16 vào A ta có:

A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)

A=\(\frac{16+4+1}{4+2}\)

A=\(\frac{21}{6}=\frac{7}{2}\)

11 tháng 3 2020

\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)

\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)

Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)

\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)

\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)

21 tháng 4 2016

câu 1 đề dị quá

5 tháng 4 2017

lớp 6 học căn đâu

25 tháng 3 2018

bạn trả lời câu hỏi của mình trc đi 

câu 1 : bạn đang thể hiện cái gì vậy ?

câu 2 đăng bài như vậy để thể hiện cái gì thế

câu 3 bạn có muốn về nhà để thể hiện không ?

25 tháng 3 2018

Lớp 6 chưa giải được đâu, với lại bài này có trong sách nâng cao lớp 8 của mình nên giải luôn :"))

Đặt \(\sqrt{\frac{x+1}{2y-1}}=t>0\), ta có: \(t+\frac{1}{t}=2,5\)hay \(2t^2-5t+2=0\) . Suy ra \(t_1=2;t_2=\frac{1}{2}\)

Với \(t_1=2\)ta có: \(\hept{\begin{cases}\frac{x+1}{2y-1}=4\\x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}}\)

 Với \(t_2=3\)ta có \(\hept{\begin{cases}\frac{x+1}{2y-1}=\frac{1}{4}\\x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{9}{2}\\y=-\frac{13}{2}\end{cases}}}\)

Vậy .....