Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)
\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2\)
\(=\left(-1\right)^2\)
\(=1\)
\(2x^3-18x=0\)
\(2x\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
\(\left(x+y-1\right)^2-2\left(x+y-1\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y-1-x-y\right)^2=\left(-1\right)^2=1\)
Áp dụng hằng đẳng thức: \(a^2+2ab+b^2=\left(a+b\right)^2\)
\(2x^3-18x=0\Leftrightarrow2x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\left\{-3;3\right\}\end{cases}}}\)
Vậy x = {-3;0;3}
=(3x+3y)-(x^2+2xy+y^2)=3(x+y)-(x+y)^2=k rõ nữa
=(4x^2-4xy) -(6y^2-6xy)= 4x(x-y)+6y(x-y)=2(x-y)(2x+3y)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)
Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)
pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0
⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0
⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0
Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy
câu 2 tương tự bài trên. nếu có sai sót thì vui long nói với mình nha!
=23445677765666667869567687668768676864786328652156191568129635912659129115767668219635198669175612876575555555654364396663676478296934986327698761963982369639874689326892346985983456937569236984698469262332948692022709247209762297534906745677902620346736776--66776236-3676767766476379667347967672364764767233093276766907676707672078747498087907997479439703473470340777360970790237443767437347672476743720674770247702934670934709324740709672367243676767234+relk;jdslgkjgr;ljgkljdslkjglkgdsfhadagkkgakhasghjgjhagjhgajhgfjhgkjkkjjkjkhhhkhkhjhjsffsdjhlkslfhdsfkljhdfjknkjbnkjsnmnc jdfkn jdjnj ndjnjd jdjdcjdncjdn jdhsjkdcndknjckndojnvkcn jfvnjcn jfjjjfjhhgfjdkflkdfhlshgglksdhfjnvjdklkgdghkjdssskkhshjffhnghfjhdjdnnvnjvvjnnvnvnvvv=ccccccjcjjcjjjhdkhdkhskhdfhdskfnfccufiecnekhhucf
vc
c
c
c
c
c
c
c
c
c
c
c
c
cc
c
c
cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0
<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0
<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0
<=>(3x-3)2+(y-3)2+2.(z+1)2=0
<=>3x-3=0 và y-3=0 và z+1=0
<=>x=1 và y=3 và z=-1
\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)
\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)