Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề sai rùi bạn ơi !
Phải sửa xy/x^2+y^2 thành x^2+y^2/xy hoặc cái gì khác
Vì xy/x^2+y^2 chỉ có GTLN chứ ko có GTNN đâu
Mk nói có gì sai thì thông cảm nha !
a. ĐKXĐ : x>1.
b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)
c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:
\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)
Vậy giá trị của A tại \(x=4-2\sqrt{3}\) là \(1+3\sqrt{3}\).
gia tri nho nhat cua :
\(x+y+z=?\)
BIET \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
CHO GIAI TRI TIET NHA CAC BAN!
em mới lớp 7 à nhưng bài này em nhớ có lần thầy cho em cách giải rồi đợi em tìm lại đã
Đặt t=\(\sqrt{x-1}\Rightarrow t^2-1=x\)
Suy ra: \(y=\frac{t^2-1+3t+1}{t^2-1+4t+2}=\frac{t^2+3t}{t^2+4t+1}\)
=>\(yt^2+4yt+y-t^2-3t=0\)
<=>\(\left(y-1\right)t^2+\left(4y-3\right)t+y=0\)
\(\Delta=16y^2-48y+9-4y^2+4y=12y^2-44y+9\)
Để y có nghĩa thì: \(\Delta\ge0\Rightarrow12y^2-44y+9\ge0\)
Bạn tự xét dấu r làm típ ,nhưng mà số xấu quá
B=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+1\ge1\Leftrightarrow\dfrac{3}{\sqrt{x}+1}\le3\Leftrightarrow-\dfrac{3}{\sqrt{x}+1}\ge-3\Leftrightarrow1-\dfrac{3}{\sqrt{x}+1}\ge-2\Leftrightarrow B\ge-2\)
Dấu '=' xảy ra khi x=0
Vậy giá trị nhỏ nhất của B là -2
\(P=\frac{x+3\sqrt{x}+2}{x}\)
ĐKXĐ : x > 0
\(\Rightarrow P=1+\frac{3}{\sqrt{x}}+\frac{2}{x}\)
Đặt \(\frac{1}{\sqrt{x}}=t\)
\(\Leftrightarrow P=2t^2+3t+1\)
\(\Leftrightarrow P=2\left(t^2+2.t.\frac{3}{4}+\frac{9}{16}-\frac{1}{16}\right)=2\left(t+\frac{3}{4}\right)^2-\frac{1}{8}\)
\(\Leftrightarrow P=2\left(t+\frac{3}{4}\right)^2+\frac{-1}{8}\)
Có \(2\left(t+\frac{3}{4}\right)^2\ge0\)
\(\Rightarrow P\ge-\frac{1}{8}\)
Vậy MIn P = -1/8 <=> t = -3/4
Lời giải:
ĐKXĐ: $x\leq 1$
Ta thấy: $\sqrt{1-x}\geq 0$ với mọi $x\leq 1$
$\Rightarrow y=2+\sqrt{1-x}\geq 2+0=2$
Vậy $y_{\min}=2$. Giá trị này đạt tại $1-x=0\Leftrightarrow x=1$