K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

\(\left\{{}\begin{matrix}\sqrt{x^2+x+y+1}+x+\sqrt{y^2+x+y+1}+y=18\left(1\right)\\\sqrt{x^2+x+y+1}-x+\sqrt{y^2+x+y+1}-y=2\left(2\right)\end{matrix}\right.\)

\(\xrightarrow[\left(1\right)-\left(2\right)]{\left(1\right)+\left(2\right)}\left\{{}\begin{matrix}2\left(\sqrt{x^2+x+y+1}+\sqrt{y^2+x+y+1}\right)=20\left(3\right)\\2\left(x+y\right)=16\Rightarrow x=8-y\left(4\right)\end{matrix}\right.\) 

Thay (4) vào (3) và thu gọn ta được: \(\left(\sqrt{x^2+9}+\sqrt{y^2+9}\right)=10\left(5\right)\)  

Kết hợp (4) và (5): \(\left\{{}\begin{matrix}x=8-y\\\sqrt{x^2+9}+\sqrt{y^2+9}=10\end{matrix}\right.\) rồi giải nốt :D good luck

 

 

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:
a)

$x(x-y)+y(x+y)=x^2-xy+xy+y^2=x^2+y^2=(-6)^2+(-5)^2=61$

b)

$x(x^2-y)-x^2(x+y)+y(x^2-x)=x^3-xy-x^3-x^2y+x^2y-xy$

$=-2xy=-2.\frac{1}{2}.(-100)=100$

24 tháng 12 2016

\(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\frac{x+y+z+t}{y+z+t}=\frac{y+z+t+x}{z+t+x}=\frac{z+t+x+y}{t+x+y}=\frac{t+x+y+z}{x+y+z}\)

  • Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

Khi đó \(P=1+1+1+1=4\)

  • Xét \(x+y+z+t=0\Rightarrow\begin{cases}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{cases}\)

Khi đó \(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

 

24 tháng 12 2016

ms đúng \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

12 tháng 11 2017

đúng rùi đó

19 tháng 10 2018

Lấy pt trên trừ pt dưới được x + y = 8

Rút y theo x thay vào mà làm

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) \(A \cap B = \{ (x;y)|\;x,y \in \mathbb{R},3x - y = 9,x - y = 1\} \)

Tức là \(A \cap B\)là tập hợp các cặp số (x;y) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}3x - y = 9\\x - y = 1\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}y = 3x - 9\\y = x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 3x - 9\\y = x - 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}2x = 8\\y = x - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 3\end{array} \right.\end{array}\)

Vậy \(A \cap B = \{ (4;3)\} .\)