$y = \dfrac{2x + 10}{x^2 – 3x + 2}$

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4
456
CTVHS
28 tháng 6 2024

??

31 tháng 1 2016

vì x =2 > 0 

=> f(2) = 2 +1  =3

18 tháng 4 2016

a) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

                       3(12 + 4t) +5(9 + 3t) - (1 + t) = 0

                   ⇔ 26t + 78 = 0 ⇔ t = -3.

Tức là d  ∩ (α) = M(0 ; 0 ; -2).

Trong trường hợp này d cắt (α) tại điểm M.

b) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

                       (1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0

                 ⇔  0.t + t  = 9, phương trình vô nghiệm.

Chứng tỏ d và (α) không cắt nhau., ta có d // (α).

c) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

              (1 + 1) + (1+ 2t) + (2 - 3t) - 4 = 0

         ⇔  0t + 0 = 0,phương trình này có vô số nghiệm, chứng tỏ d ⊂ (α) .


 

18 tháng 4 2016

Đường thẳng ∆ qua điểm M(-3 ; -1 ; -1) có vectơ chỉ phương  (2 ; 3 ; 2).

Mặt phẳng (α) có vectơ pháp tuyến (2 ; -2 ; 1).

Ta có M  (α) và  = 0 nên ∆ // (α).

Do vậy  d(∆,(α)) = d(M,(α)) = 


 

19 tháng 3 2016

a) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

                       3(12 + 4t) +5(9 + 3t) - (1 + t) = 0

                   ⇔ 26t + 78 = 0 ⇔ t = -3.

Tức là d  ∩ (α) = M(0 ; 0 ; -2).

Trong trường hợp này d cắt (α) tại điểm M.

b) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

                       (1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0

                 ⇔  0.t + t  = 9, phương trình vô nghiệm.

Chứng tỏ d và (α) không cắt nhau., ta có d // (α).

c) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:

              (1 + 1) + (1+ 2t) + (2 - 3t) - 4 = 0

         ⇔  0t + 0 = 0,phương trình này có vô số nghiệm, chứng tỏ d ⊂ (α) .

  

 

phân tích đa thức thành nhân tử.3x2 + 2x – 1x3 + 6x2 + 11x + 6x4 + 2x2 – 3ab + ac +b2 + 2bc + c2a3 – b3 + c3 + 3abcbài 2 : cho phân thức : tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.Bài 3 : Chứng minh các bất đẳng thức :Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x,...
Đọc tiếp

phân tích đa thức thành nhân tử.

  1. 3x2 + 2x – 1
  2. x3 + 6x2 + 11x + 6
  3. x4 + 2x2 – 3
  4. ab + ac +b2 + 2bc + c2
  5. a3 – b3 + c3 + 3abc

bài 2 : cho phân thức : A = \frac{x^4-2x^2+1}{x^3-3x -2}

  1. tìm điều kiện của x để A có nghĩa.
  2. Rút gọn A.
  3. Tính x để A < 1.

Bài 3 : Chứng minh các bất đẳng thức :

  1. Cho a + b + c = 0 . Chứng minh rằng :  a3 + b3 + c3 = 3abc.
  2. Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :

\frac{a}{b+c} +\frac{b}{a+c} +\frac{c}{a+b} <2

  1. Chứng minh rằng : x5 + y5 ≥  x4y + xy4 với x, y ≠ 0 và x + y ≥ 0

Bài 4 : giải phương trình :

  1. x2 – 3x + 2 + |x – 1| = 0
  2.  
  3. \frac{x+2}{x-2} -\frac{1}{x} -\frac{2}{x(x-2)} =0

 Bài 5 : tìm giá trị lớn nhất và nhỏ nhất (nếu có)

  1. A = x2 – 2x + 5
  2. B = -2x2 – 4x + 1.
  3. C = \frac{3}{-x^2+2x-4}

Bài 6 : tính giá trị của biểu thức.

  1. Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
  2. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \frac{a+b-c}{c} =\frac{a+c-b}{b} =\frac{c+b-a}{c}

Tính : P = \frac{(a+b)(b+c)(a+c)}{abc}

Bài 7 : Chứng minh rằng

  1. 8351634 + 8241142 chia hết cho 26.
  2. A = n3 + 6n2 – 19n – 24 chia hết cho 6.
  3. B = (10n – 9n – 1) chia hết cho 27 với n thuộc N*.

Bài 8 :

Trong cuộc đua mô tô có ba xe khởi hành cùng một lúc. Xe thứ hai trong một giờ chạy chậm hơn xe thứ nhất 15km và nhanh xe thứ ba 3km. nên đến đích chậm hơn xe thứ nhất 12 phút và sớm hơn xe thứ ba 3 phút. Không có sự dừng lại dọc đường đi. Tính vận tốc mỗi xe, quãng đường đua và thời gian mỗi xe.

8
16 tháng 1 2016

sao cũng tik ak

19 tháng 3 2016

Đường thẳng ∆ qua điểm M(-3 ; -1 ; -1) có vectơ chỉ phương  (2 ; 3 ; 2).

Mặt phẳng (α) có vectơ pháp tuyến (2 ; -2 ; 1).

Ta có M  (α) và  = 0 nên ∆ // (α).

Do vậy  d(∆,(α)) = d(M,(α)) = .


 

18 tháng 4 2016

a)  Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).

Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).

Ta có    = (19 ; 2 ; -11) ;  = (8 ; 1 ; 14) 

và  = (19.8 + 2 - 11.4) = 0

nên d và d' cắt nhau.

Nhận xét : Ta nhận thấy  không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Xét hệ phương trình:

Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.

b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .

Ta thấy  và  cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M  d' nên d và d' song song.

 

19 tháng 3 2016

a)  Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).

Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).

Ta có    = (19 ; 2 ; -11) ;  = (8 ; 1 ; 14) 

và  = (19.8 + 2 - 11.4) = 0

nên d và d' cắt nhau.

Nhận xét : Ta nhận thấy  không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.

Xét hệ phương trình:

Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.

b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .

Ta thấy  và  cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.

Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M  d' nên d và d' song song.

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Hình vẽ:

Chưa phân loại

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Lời giải:

Kẻ $Ax$ là tiếp tuyến của $(O)$

Khi đó: $Ax\perp OA(1)$

Mặt khác:

Dễ thấy tứ giác $BFEC$ có $\widehat{BFC}=\widehat{BEC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp.

$\Rightarrow \widehat{AFE}=\widehat{ACB}$

Mà: $\widehat{ACB}=\widehat{xAB}$ (tính chất góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)

Suy ra $\widehat{AFE}=\widehat{xAB}$. Mà 2 góc này ở vị trí so le trong nên $Ax\parallel EF(2)$

Từ $(1);(2)\Rightarrow OA\perp EF$ (đpcm)

19 tháng 3 2016

a) Xét mặt phẳng (P) đi qua d và (P) ⊥ (Oxy), khi đó ∆ = (P)  ∩ (Oxy) chính là hình chiếu vuông góc của d lên mặt phẳng (Oxy).

Phương trình mặt phẳng (Oxy) có dạng: z = 0 ;  vectơ (0 ; 0 ;1) là vectơ pháp tuyến của  (Oxy), khi đó  và  ( 1 ; 2 ; 3) là cặp vectơ chỉ phương của mặt phẳng (P).

 = (2 ; -1 ; 0) là vectơ pháp tuyến của (P).

Phương trình mặt phẳng (P) có dạng:

       2(x - 2) - (y + 3) +0.(z - 1) = 0

 hay 2x - y - 7 = 0.

Đường thẳng hình chiếu ∆ thỏa mãn hệ:

                                       

Điểm M0( 4 ; 1 ; 0) ∈ ∆ ; vectơ chỉ phương  của ∆ vuông góc với  và vuông góc với , vậy có thể lấy  = (1 ; 2 ; 0).

Phương trình tham số của hình chiếu ∆ có dạng:

                                       .

Chú ý :

Ta có thể giải bài toán này bằng cách sau:

Lấy hai điểm trên d và tìm hình chiếu vuông góc của nó trên mặt phẳng (Oxy). Đường thẳng đi qua hai điểm đó chính là hình chiếu cần tìm.

Chẳng hạn lấy M1( 2 ; 3 ; -1) ∈ d và  M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của 

M1 trên (Oxy) là N(2 ; -3 ; 0), hình chiếu vuông góc của M2 trên (Oxy) là N2(0 ; -7 ; 0).

Đườn thẳng ∆ qua N1, N­2 chính là hình chiếu vuông  góc của d lên (Oxy).

Ta có : (-2 ; -4 ; 0) // (1 ; 2 ; 0).

Phương trình tham số của ∆ có dạng:

                                        .

b) Tương tự phần a), mặt phẳng (Oxy) có phương trình x = 0.

 lấy M1( 2 ; 3 ; -1) ∈ d và  M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của 

M1 trên (Oxy) là M'(0 ; -3 ; 1), hình chiếu vuông góc của M2 trên (Oyz) là chính nó.

Đườn thẳng ∆ qua M'1, M­2 chính là hình chiếu vuông  góc của d lên (Oyz).

Ta có: (0 ; -4 ; -6) //  (0 ; 2 ; 3).

Phương trình M'12 có dạng: 

                                          .