Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(|x+7|+|2y-12|=0\)
Vì \(\hept{\begin{cases}|x+7|\ge0;\forall x,y\\|2y-12|\ge0;\forall x,y\end{cases}}\)\(\Rightarrow|x+7|+|2y-12|\ge0;\forall x,y\)
Do đó \(|x+7|+|2y-12|=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+7|=0\\|2y-12|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-7\\y=6\end{cases}}\)
Vậy ...
các phần sau tương tự
a) Ta có :
\(\left|x+7\right|\ge0\)
\(\left|2y-12\right|\ge0\)
Để |x+7| + | 2y - 12| = 0
=> x +7 = 0 và 2y - 12= 0
x = 7 2y = 12
y = 12 : 2
y = 6
Vậy x = 7 ; y = 6
\(\dfrac{8}{9}\) : ( 2 - 3 \(\times\) y) = \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{9}\) : \(\dfrac{5}{3}\)
2 - 3 \(\times\) y = \(\dfrac{8}{15}\)
3 \(\times\) y = 2 - \(\dfrac{8}{15}\)
3 \(\times\) y = \(\dfrac{22}{15}\)
y = \(\dfrac{22}{15}\) : 3
y = \(\dfrac{22}{45}\)
Ta có : 10 + 11+ 12 + 13 + ... + x = 5106
=> 1 + 2 + 3 + ..... + x = 5106 + (1 + 2 + 3 + ..... + 9)
=> 1 + 2 + 3 + ..... + x = 5106 + 45
=> 1 + 2 + 3 + ...... + x = 5151
=> \(\frac{x\left(x+1\right)}{2}=5151\)
<=> \(x\left(x+1\right)=10302\)
<=> x(x + 1) = 101.102
=> x = 101
(y-4)(5-2y) = 0
+) y - 4 = 0
y = 4
+) 5 - 2y = 0
2y = 5
y = 5/2
\(\left(y-4\right).\left(5-2y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y-4=0\\5-2y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=2,5\end{cases}}}\)
Vậy \(\orbr{\begin{cases}y=4\\y=2,5\end{cases}}\)
ý kia tương tự