K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2023

a) \(3\left(x-y\right)^2+9y\left(y-x\right)^2\)

\(=3\left(x-y\right)^2+9y\left(x-y\right)^2\)

\(=\left(x-y\right)^2\left(3-9y\right)\)

\(=3\left(x-y\right)^2\left(3y+1\right)\)

b) \(3\left(x-y\right)^2+9y\left(y-x\right)\)

\(=3\left(y-x\right)^2+9y\left(y-x\right)\)

\(=\left(y-x\right)\left[3\left(y-x\right)+9y\right]\)

\(=3\left(y-x\right)\left(y-x+3y\right)\)

\(=3\left(y-x\right)\left(4y-x\right)\)

a: =3(x-y)^2+9y(x-y)^2

=(x-y)^2(3+9y)

=(x-y)^2*3*(y+3)

b: =3(x-y)^2-9y(x-y)

=3(x-y)(x-y-9y)

=3(x-y)(x-10y)

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

\(a)\dfrac{{4{\rm{x}} + 3y}}{{{x^2} - {y^2}}} - \dfrac{{3{\rm{x}} + 4y}}{{{x^2} - {y^2}}} = \dfrac{{\left( {{\rm{4x}} + 3y} \right) - \left( {3{\rm{x}} + 4y} \right)}}{{{x^2} - {y^2}}} = \dfrac{{4{\rm{x}} + 3y - 3{\rm{x}} - 4y}}{{{x^2} - {y^2}}} = \dfrac{{x - y}}{{{x^2} - {y^2}}} = \dfrac{{x - y}}{{\left( {x - y} \right)\left( {x + y} \right)}} = \dfrac{1}{{x + y}}\)

\(\begin{array}{l}b)\dfrac{{2{\rm{x}}y - 3{y^2}}}{{{x^2} - 3{\rm{x}}y}} - \dfrac{x}{{3{\rm{x}} - 9y}}\\ = \dfrac{{2{\rm{x}}y - 3{y^2}}}{{x\left( {x - 3y} \right)}} - \dfrac{{{x^2}}}{{3\left( {x - 3y} \right)}}\\ = \dfrac{{3\left( {2{\rm{x}}y - 3{y^2}} \right)}}{{3{\rm{x}}\left( {x - 3y} \right)}} - \dfrac{{{x^2}}}{{3{\rm{x}}\left( {x - 3y} \right)}}\\ = \dfrac{{6{\rm{x}}y - 9{y^2} - {x^2}}}{{3{\rm{x}}\left( {x - 3y} \right)}} = \dfrac{{ - \left( {{x^2} - 6{\rm{x}}y + 9{y^2}} \right)}}{{3{\rm{x}}\left( {x - 3y} \right)}} = \dfrac{{ - {{\left( {x - 3y} \right)}^2}}}{{3{\rm{x}}\left( {x - 3y} \right)}} = \dfrac{{ - \left( {x - 3y} \right)}}{{3{\rm{x}}}}\end{array}\)

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198

2 tháng 3 2020

1) x2 + x - y2 + y = (x2 - y2) + (x + y) = (x - y)(x + y) + (x + y) = (x - y + 1)(x + y)

2) 4x2 - 9y2 + 4x - 6y = (4x2 - 9y2) + (4x - 6y) = (2x - 3y)(2x + 3y) + 2(2x - 3y) = (2x - 3y)(2x + 3y + 2)

3) x2 + x + y2 + y + 2xy = (x2 + 2xy + y2) + (x + y) = (x + y)2 + (x + y) = (x + y)(x + y + 1)

4) -x2 + 5x + 2xy - 5y - y2 = -(x2 - 2xy + y2) + (5x - 5y) = -(x - y)2 + 5(x - y) = (x - y)(y - x + 5)

5) x2 - y2 + 2x + 1  = (x2 + 2x + 1) - y2 = (x + 1)2 - y2 = (x + 1 + y)(x - y + 1)

6) x2 - 1 - y2 + 2y = x2 - (y2 - 2y + 1) = x2 - (y - 1)2 = (x - y + 1)(x + y - 1)

7) x2 + 2xz - y2 + 2uy + z2 - u2 =(x2 + 2xz + z2) - (y2 - 2uy + u2) = (x + z)2 - (y - u)2 = (x + z - y + u)(x + z + y - u)

8) x3 + 3x2y + x + 3xy2 + y + y3 = (x3 + 3x2y + 3xy2 + y3) + (x + y) = (x + y)3 + (x + y) = (x + y)(x2 + 2xy + y2 + 1)

9) x3 + y(1 - 3x2) + x(3y2 - 1) - y3 = x3 + y - 3x2y + 3xy2 - x - y3 = (x3 - 3x2y + 3xy2 - y3) - (x - y) = (x - y)3 - (x - y) = (x - y)(x2 - 2xy+y2-1)

30 tháng 6 2018

a)  \(x^3+3x^2+3x+1=\left(x+1\right)^3\)

b)  \(27y^3-9y^2+y-\frac{1}{27}=\left(3y-\frac{1}{3}\right)^3\)

c) \(8x^6+12x^4y+6x^2y+y^3=\left(2x^2+y\right)^3\)

d)  \(\left(x+y\right)^3\left(x-y\right)^3=\left(x^2-y^2\right)^3\)

e) \(\left(x^2-y^2\right)^2\left(x+y\right)\left(x-y\right)=\left(x^2-y^2\right)^3\)