K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

\(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^3}{5}\)

=> \(\dfrac{30x^2+20y^2+15z^2}{60}=\dfrac{12x^2+20y^2+15z^2}{60}\) ( quy đồng mẫu số )

=> \(30x^2+20y^2+15z^2=12x^2+12y^2+12z^2\)

=> \(18x^2+8y^2+3z^2=0\) ( Lấy vế trái trừ vế phải )

SCP luôn lớn hơn 0 =>\(\)\(\left\{{}\begin{matrix}18x^2=0\\8y^2=0\\3z^2=0\end{matrix}\right.\Rightarrow x=y=z=0\)

Vậy x=y=z=0 .

9 tháng 8 2017

a, 7x^3 + 5 ( x - y )^2 v- 7y^3
= 7 ( x^3 - y^3 ) + 5 ( x-y )^2
= 7 ( x - y )^3 + 5 ( x-y ) ^2
= [ 7 ( x- y ) + 5 ] ( x-y) ^2

5 tháng 7 2018

a, sửa (x3+y3+z3) thành (x+y+z)3

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3-a^3-b^3-c^3\)

\(=3\left(y+z\right)\left[x^2+x\left(y+z\right)\right]+y^3+3y^2z+3yz^2+z^3-y^3-z^3\)

\(=3\left(y+z\right)\left(x^2+xy+xz\right)+3yz\left(y+z\right)\)

\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

b, \(x^3+x^2z+y^2z-xyz+y^3\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)

\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)

c, không phân tích được

3 tháng 9 2018

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)z\left(x+y+z\right)+z^3-x^3-y^3-z^3\)

\(=x^3+y^3+z^3+3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

29 tháng 8 2016

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^2\left(y-x^2\right)+xyz\left(xyz-1\right)\)

\(P=x^3z-x^3y^2+xy^3-y^3z^2+yz^2-x^2z^2+x^2y^2z^2-xyz\)

29 tháng 8 2016

cám ơn nhiều