![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 7x^3 + 5 ( x - y )^2 v- 7y^3
= 7 ( x^3 - y^3 ) + 5 ( x-y )^2
= 7 ( x - y )^3 + 5 ( x-y ) ^2
= [ 7 ( x- y ) + 5 ] ( x-y) ^2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2\left(1-x^2\right)-4-4x^2\)
\(\text{ Phân tích thành nhân tử}\)
\(\left(-\left(x^2-x+2\right)\right)\left(x^2+x+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(-4x^5\left(x^3-4x^2+7x-3\right)\)
\(=-4x^8+16x^7-28x^6+12x^5\)
2) \(3x^4\left(-2x^3+5x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)
\(=-6x^7+15x^6-2x^5+x^4\)
3) \(-5x^2y^4\left(3x^2y^3-2x^3y^2-xy\right)\)
\(=-15x^4y^7+10x^5y^6+5x^3y^5\)
4) \(4x^3y^2\left(-2x^2y+4x^4-3y^2\right)\)
\(=-8x^5y^3+16x^7y^2-12x^3y^4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1.
a) x3 + 2x2 - 3x - 6 = ( x3 + 2x2 ) - ( 3x + 6 ) = x2( x + 2 ) - 3( x + 2 ) = ( x + 2 )( x2 - 3 )
b) ( x - 9 )( x - 7 ) + 1 = x2 - 16x + 63 + 1 = x2 - 16x + 64 = ( x - 8 )2
c) ( x2 + x - 1 )2 + 4x2 + 4x
= ( x2 + x - 1 )2 + 4( x2 + x ) (1)
Đặt t = x2 + x
(1) <=> ( t - 1 )2 + 4t
= t2 - 2t + 1 + 4t
= t2 + 2t + 1
= ( t + 1 )2
= ( x2 + x + 1 )2
d) ( x2 + y2 - 17 )2 - 4( xy - 4 )2
= ( x2 + y2 - 17 )2 - 22( xy - 4 )2
= ( x2 + y2 - 17 )2 - [ 2( xy - 4 ) ]2
= ( x2 + y2 - 17 )2 - ( 2xy - 8 )2
= [ ( x2 + y2 - 17 ) - ( 2xy - 8 ) ][ ( x2 + y2 - 17 ) + ( 2xy - 8 ) ]
= ( x2 + y2 - 17 - 2xy + 8 )( x2 + y2 - 17 + 2xy - 8 )
= [ ( x2 - 2xy + y2 ) - 17 + 8 ][ ( x2 + 2xy + y2 ) - 17 - 8 ]
= [ ( x - y )2 - 9 ][ ( x + y )2 - 25 ]
= [ ( x - y )2 - 32 ][ ( x + y )2 - 52 ]
= ( x - y - 3 )( x - y + 3 )( x + y - 5 )( x + y + 5 )
Bài 2.
ĐK : x, y ∈ Z
a) x + 2y = xy + 2
<=> x + 2y - xy - 2 = 0
<=> ( x - xy ) - ( 2 - 2y ) = 0
<=> x( 1 - y ) - 2( 1 - y ) = 0
<=> ( 1 - y )( x - 2 ) = 0
+) Nếu 1 - y = 0 => y = 1 và nghiệm đúng với mọi x ∈ Z
+) Nếu x - 2 = 0 => x = 2 và nghiệm đúng với mọi y ∈ Z
Vậy phương trình có hai nghiệm
1. \(\hept{\begin{cases}y=1\\\forall x\inℤ\end{cases}}\); 2. \(\hept{\begin{cases}x=2\\\forall y\inℤ\end{cases}}\)
b) xy = x + y
<=> xy - x - y = 0
<=> ( xy - x ) - ( y - 1 ) - 1 = 0
<=> x( y - 1 ) - ( y - 1 ) = 1
<=> ( y - 1 )( x - 1 ) = 1
Ta có bảng sau :
y-1 | 1 | -1 |
x-1 | 1 | -1 |
y | 2 | 0 |
x | 2 | 0 |
Các nghiệm trên đều thỏa mãn ĐK
Vậy ( x ; y ) = { ( 2 ; 2 ) , ( 0 ; 0 ) }
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{x^2-x+1-4x}{xy}=\dfrac{x^2-5x+1}{xy}\)
b: \(=\dfrac{5xy^2-x^2y+4xy^2+xy^2}{3xy}\)
\(=\dfrac{10xy^2-x^2y}{3xy}=\dfrac{xy\left(10y-x\right)}{3xy}=\dfrac{10y-x}{3}\)
d: \(\dfrac{2x+4}{10}-\dfrac{2-x}{15}\)
\(=\dfrac{x+2}{5}+\dfrac{x-2}{15}\)
\(=\dfrac{3x+6+x-2}{15}=\dfrac{4x+4}{15}\)
e: \(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)
phân tích đa thức thành nhân tử