\(\frac{1}{x}\)+\(\frac{2}{y}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

Ta có: \(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\)

\(\ge\frac{\left(1+1+1\right)^2}{x+y+y}=\frac{3^2}{x+2y}=\frac{9}{3}=3\)

Dấu "='' xảy ra khi: x = y = 1

3 tháng 5 2018

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

26 tháng 8 2017

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 

Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 

Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 

Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 

Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 

Từ (1) và (2) suy ra a và b đều là số chẵn 

Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 

Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 

Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 

Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\Leftrightarrow ab+bc+ca\ge\frac{3}{4}\)

áp dụng bđt holder ta có:

\(\left(a^3+b^3+c^3\right)\left(b^3+c^3+a^3\right)\left(1+1+1\right)\ge\left(ab+bc+ca\right)^3\)

\(\Leftrightarrow3\left(a^3+b^3+c^3\right)^2\ge\frac{27}{64}\)

\(\Leftrightarrow a^3+b^3+c^3\ge\frac{3}{8}\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\ge\frac{3}{8}\left(Q.E.D\right)\)

29 tháng 2 2020

\(VT=\left(\frac{1}{x^3+y^3+xy\left(x+y\right)}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^3+y^3+xy\left(x+y\right)+2xy\left(x+y\right)}+2+\frac{5}{\left(x+y\right)^2}=11\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

1 tháng 3 2020

Ta có:

\(\left(a+b\right)^2\ge4ab\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{1}{a+b}\) với a,b dương

Do x+y=1 nên ta có:

\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

Ta có:

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Ta sử dung bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)thì \(4xy+\frac{1}{4xy}=\frac{4xy}{1}+\frac{1}{4xy}\ge2\)

Mặt khác 

\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)Nên ta suy ra:

\(A=\frac{1}{x^3+xy+y^3}+\frac{4y^2x^2+2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\ge4+2+5=11\)

Dấu "=" xảy ra khi và chỉ khi x=y=\(\frac{1}{2}\)

9 tháng 5 2019

Áp dụng BĐT Cauchy với 2 số không âm
x + y \ge 2\sqrt {xy} (1)
\frac{1}{x} + \frac{1}{y} \ge \frac{2}{{\sqrt {xy} }}(2)
Nhân (1) và(2) ta được(x + y)(\frac{1}{x} + \frac{1}{y}) \ge 4
\Leftrightarrow \frac{1}{x} + \frac{1}{y} \ge \frac{4}{{x + y}} \Rightarrow dpcm

Áp dụng thẳng BĐT AM-GM(Cô si or Cauchy) vào VT,ta có:

1/x +1/y ≥2√1/xy =2/√xy ≥2/(x+y)/2  =4/x+y (đpcm)

Dấu "=" xảy ra khi x = y

28 tháng 3 2017

Câu b) x/y + y/x >hoặc = 2

<=> x/y + y/x - 2 > hoặc = 0

<=> x^2 + y^2 -2xy /xy >hoặc =0

<=> (x-y)^2 /xy > hoặc = 0

(x-y)^2 > hoặc = 0 với mọi x;y .Dấu"=" xảy ra khi x=y

vì x;y cùng dấu =>xy>0

=>(x-y)^2 / xy > hoặc = 0 luôn luôn đúng.

Mà các Phép biến đổi trên là tương đương

=>x/y + y/x >hoặc =2 với mọi x;y cùng dấu. Dấu "=" xảy ra khi x=y. Nhớ nhé

28 tháng 3 2017

Câu g) a^2 + b^2 > hoặc =1/2 với a+b=1

vì a+b=1 =>(a+b)^2 = 1 =>(1*a+1*b)^2 =1

Áp dụng bất đẳng thức Bunhiacốpski cho 4 số 1;1;a;b ta có

(1*a+1*b)^2 < hoặc = (1^2 + 1^2 )(a^2 + b^2).Dấu "=" xảy ra khi 1^2 / a^2 = 1^2 /b^2 =>1/a = 1/b=>a=b=1/2

Hay 1< hoặc = 2(a^2 +b^2) .Dấu "=" xảy ra khi a=b=1/2

=>a^2 + b^2 > hoặc = 1/2.Dấu "=" xảy ra khi a=b=1/2 =>đpcm

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

5 tháng 11 2017

Bạn xét hai trường hợp là x và y cùng dấu hoặc khác dấu

5 tháng 11 2017

Bạn trả lời chi tiết giúp mk được hok