\(\dfrac{x^2+y^2}{xy}=\dfrac{25}{12}\) . tinh gt cua bt A=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2+2xy+y^2)=49xy

=>12(x+y)^2=49xy

=>(x+y)^2=49xy/12 (1)

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2-2xy+y^2)=xy

=>12(x-y)^2=xy

=>(x-y)^2=xy/12 (2)

Từ (1) và (2) suy ra :

(x-y)^2/(x+y)^2=1/49

Vì x<y<0 nên x-y/x=y=-1/7

Tick cho mik nhé thanghoa

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

Ta có \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)

\(\Leftrightarrow 12(x^2+y^2)-25xy=0\)

\(\Leftrightarrow (3x-4y)(4x-3y)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4y=0\\4x-3y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4y}{3}\left(1\right)\\x=\dfrac{3y}{4}\left(2\right)\end{matrix}\right.\)

Với (1):

\(A=\frac{x-y}{x+y}=\frac{\frac{4}{3}y-y}{\frac{4}{3}y+y}=\frac{\frac{1}{3}y}{\frac{7}{3}y}=\frac{1}{7}\)

Với (2)

\(A=\frac{x-y}{x+y}=\frac{\frac{3}{4}y-y}{\frac{3}{4}y+y}=\frac{\frac{-1}{4}y}{\frac{7}{4}y}=\frac{-1}{7}\)

Vậy

\(A=\pm \frac{1}{7}\)

1 tháng 12 2017

thank

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

\(\frac{x^2+y^2}{xy}=\frac{10}{3}\Rightarrow 3(x^2+y^2)=10xy\)

\(\Leftrightarrow 3x^2-10xy+3y^2=0\)

Đặt \(x=ty\) thì \(3(ty)^2-10ty.y+3y^2=0\)

\(\Leftrightarrow y^2(3t^2-10t+3)=0\)

\(\Rightarrow 3t^2-10t+3=0\) (do $y\neq 0$)

\(\Leftrightarrow (t-3)(3t-1)=0\Rightarrow \left[\begin{matrix} t=3\\ t=\frac{1}{3}\end{matrix}\right.\)

\(B=\frac{x-y}{x+y}=\frac{ty-y}{ty+y}=\frac{t-1}{t+1}=\left[\begin{matrix} \frac{1}{2}\\ \frac{-1}{2}\end{matrix}\right.\)

Vậy..........

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 3:

a) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)

\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)

Theo BĐT AM-GM:

\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)

Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
8 tháng 8 2017

Bài 1: Thiếu đề.

Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)

Bài 4 a) Sai đề với \(x<0\)

b) Áp dụng BĐT AM-GM:

\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)

Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)

Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)

Bài 6: Áp dụng BĐT AM-GM cho $6$ số:

\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)

Do đó ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=d=1\)

10 tháng 8 2017

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y

Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)

Vậy ta suy ra đpcm

b) Ta có: a+b>c;b+c>a;a+c>b

Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

.Tương tự:

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

Vậy ta có đpcm

10 tháng 8 2017

6) Ta có:

\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)

\(ab+cd=ab+\dfrac{1}{ab}\ge2\)

Suy ra đpcm