Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BDT AM-GM ta có:\(VT\ge3\left(\frac{x}{y+z+1}+\frac{y}{x+z+1}+\frac{z}{x+y+1}\right)\)
\(\Rightarrow\frac{VT}{3}\ge\frac{x^2}{xy+xz+x}+\frac{y^2}{yz+yx+y}+\frac{z^2}{xz+zy+z}\)
\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+xy+z}\) (Cauchy-Schwarz)
Do \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)\(\Rightarrow\left(x+y+z\right)^2\le\left(x^2+y^2+z^2\right)^2\)
\(\Rightarrow x+y+z\le x^2+y^2+z^2\).Suy ra
\(2\left(xy+yz+xz\right)+x+y+z\le2\left(xy+yz+xz\right)+x^2+y^2+z^2=\left(x+y+z\right)^2\)
Suy ra \(\frac{VT}{3}\le\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\Rightarrow VT\ge3\) (điều phải chứng minh)
Dấu "=" xảy ra khi x=y=z=1
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)
Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}1+x\ge2\sqrt{x}\\x+y\ge2\sqrt{xy}\\1+y\ge2\sqrt{y}\end{matrix}\right.\)
Cộng theo vế 3 BĐT trên ta có:
\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{y}+\sqrt{xy}\right)\)
\(\Leftrightarrow VT=1+x+y\ge\sqrt{x}+\sqrt{y}+\sqrt{xy}=VP\)
Xảy ra khi \(\left\{{}\begin{matrix}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\1+y=2\sqrt{y}\end{matrix}\right.\)\(\Rightarrow x=y=1\)
Khi đó \(P=x^2+y^2=1^2+1^2=2\)
Và \(Q=x^{2009}+y^{2009}=1^{2009}+1^{2009}=2\)
Với \(x,y>0\) ta có
\(1+x+y=\sqrt{x}+\sqrt{xy}+\sqrt{y}\)
\(\Leftrightarrow2+2x+2y-2\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-2\sqrt{y}+1\right)+\left(x-2\sqrt{xy}+y\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
\(\forall x,y>0\) ta luôn có \(\left\{{}\begin{matrix}\left(\sqrt{x}-1\right)^2\ge0\\\left(\sqrt{y}-1\right)^2\ge0\\\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=1\)
Vậy x=y=1
Nên P=Q=2
\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)
\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)
\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)
\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)
Dấu "=" <=> x=y=z=1