K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

ta có:

A= 5(x+y)+8xy

Thay xy=3/4 và x+y=2/5 vào biểu thức A ta có:

A=5*2/5+8*3/4=8

14 tháng 6 2018

A= ( 5x + 5y ) + 8xy

A = 5(x+y)+8xy  

A= 5.2/5+8.3/4

A= 2 + 6

A = 8.

2 tháng 2 2016

xy - 5x - 5y = 0

=xy - 5x - 5y +25 = 25

dựa theo tính chất bỏ dấu ngoặc

=> (xy - 5x) - [5y - (5 x 5)] = 25

= x(y - 5) - 5( y - 5 ) = 25

= (y-5)(x-5)= 25

=> (y - 5) ; (x - 5) \(\in\) Ư (25) = { 1 ; 5 ; 25 ; -1 ; -5 ; -25 }

sau đó tìm x ; y

12 tháng 7 2018

bạn viêta đề rõ hơn đi

12 tháng 7 2018

a ) x.y+14+2y+7x=-5

b) x.y+x+y=2

c) x.y-1=3x+5y+4

2 tìm x thuộc Z để A đạt giá trị nhỏ nhất

a) A=lxl+5

b) A=lx-5l-2018

l l là giá trị tuyệt đối nh

a) \(\left(x-7\right)\left(x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-12\end{matrix}\right.\)

Vậy: x∈{7;-12}

b) \(\left(3x-15\right)\left(6-2x\right)=0\)

\(3\left(x-5\right)\cdot2\cdot\left(3-x\right)=0\)

hay \(6\left(x-5\right)\left(3-x\right)=0\)

Vì 6≠0

nên \(\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)

Vậy: x∈{3;5}

c) \(\left(3x+9\right)\left(4y-8\right)=0\)

\(3\left(x+3\right)\cdot4\left(y-2\right)=0\)

hay \(12\left(x+3\right)\left(y-2\right)=0\)

Vì 12≠0

nên \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

Vậy: x=-3 và y=2

d) \(\left(2y-16\right)\left(8x-24\right)=0\)

\(2\left(y-8\right)\cdot8\left(x-3\right)=0\)

hay 16(y-8)(x-3)=0

Vì 16≠0

nên \(\left\{{}\begin{matrix}y-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=3\end{matrix}\right.\)

Vậy: y=8 và x=3

e) \(\left(22-11y\right)\left(9x-18\right)=0\)

\(11\left(2-y\right)9\left(x-2\right)=0\)

hay 99(2-y)(x-2)=0

Vì 99≠0

nên \(\left\{{}\begin{matrix}2-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\)

Vậy: x=2 và y=2

g) \(\left(7y+14\right)\cdot\left(9x-18\right)=0\)

⇔7(y+2)*9(x-2)=0

hay 63(y+2)(x-2)=0

Vì 63≠0

nên \(\left\{{}\begin{matrix}y+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)

Vậy: y=-2 và x=2

h) xy=3

⇒x,y∈Ư(3)

⇒x,y∈{1;-1;3;-3}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

Vậy: x∈{1;-1;3;-3} và y∈{1;-1;3;-3}

i) x*y=-5

⇔x,y∈Ư(-5)

⇔x,y∈{1;-1;5;-5}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x=-5\\y=1\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Vậy: x∈{1;5;-1;-5} và y∈{1;5;-1;-5}

k) \(\left(x+4\right)\left(y-5\right)=-3\)

⇔x+4; y-5∈Ư(-3)

⇔x+4; y-5∈{1;3;-3;-1}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x+4=-1\\y-5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=8\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x+4=1\\y-5=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x+4=3\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x+4=-3\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=6\end{matrix}\right.\)

Vậy: x∈{-5;-3;-1;-7} và y∈{8;2;4;6}

m) (x-9)(y-5)=-1

⇔x-9; y-5∈Ư(-1)

⇔x-9; y-5∈{1;-1}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x-9=1\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x-9=-1\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)

Vậy: x∈{10;8} và y∈{4;6}

n) x+3⋮x+4

⇔x+4-1⋮x+4

⇔-1⋮x+4

hay x+4∈Ư(-1)

⇔x+4∈{1;-1}

⇔x∈{-3;-5}

Vậy: x∈{-3;-5}

p)(x-5)⋮x+2

⇔x+2-7⋮x+2

hay -7⋮x+2

⇔x+2∈Ư(-7)

⇔x+2∈{1;-1;7;-7}

hay x∈{-1;-3;5;-9}

Vậy: x∈{-1;-3;5;-9}