Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(-\left(x+3\right)\left(x-4\right)+\left(x+1\right)\left(x-1\right)=10\)
\(\Rightarrow-\left(x^2-4x+3x-12\right)+x^2-1=10\)
\(\Rightarrow-x^2+x+12+x^2-1=10\)
\(\Rightarrow x=10+1-12\Rightarrow x=-1\)
b, \(\left(2x-1\right)\left(x-2\right)-\left(x+3\right)\left(2x-7\right)=3\)
\(\Rightarrow2x^2-4x-x+2-\left(2x^2-7x+6x-21\right)=3\)
\(\Rightarrow2x^2-5x+2-2x^2+x+21=3\)
\(\Rightarrow-4x=3-21-2\Rightarrow-4x=-20\)
\(\Rightarrow x=5\)
Các câu còn lại làm tương tự! Phá ngoặc ra!
Chúc bạn học tốt!!!
một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?
a: \(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
=>1+3x-6=3-x
=>3x-5=3-x
=>4x=8
hay x=2(loại)
b: \(\Leftrightarrow8-x-8\left(x-7\right)=-26\)
=>8-x-8x+56=-26
=>-9x+64=-26
=>-9x=-90
hay x=10(nhận)
c: \(\dfrac{1}{x-2}+\dfrac{1}{x-3}=\dfrac{2}{x-1}\)
\(\Leftrightarrow\dfrac{x-3+x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{2}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=2\left(x^2-5x+6\right)\)
\(\Leftrightarrow2x^2-5x-2x+5=2x^2-10x+12\)
=>-7x+10x=12-5
=>3x=7
hay x=7/3(nhận)
\(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x-4\right)^2=8\left(x-3\right)\left(x+3\right)\)3)
\(\Leftrightarrow x^3+4^3-x\left(x-4\right)^2=8\left(x^2-3^2\right)\)
\(\Leftrightarrow x^3+64-x\left(x^2-8x+16\right)=8x^2-72\)
\(\Leftrightarrow x^3+64-x^3+8x^2-16x-8x^2-72=0\)
\(\Leftrightarrow-16x-8=0\)
\(\Leftrightarrow-8\left(2x-1\right)=0 \)
\(\Rightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?
1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)
=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)
=> \(4x^2-28x+49-4x+12=5\)
=> \(4x^2-32x+61=5\)
=> \(4x^2-32x+61-5=0\)
=> \(4x^2-32x+56=0\)
=> \(4\left(x^2-8x+14\right)=0\)
=> \(x^2-8x+14=0\)
=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)
4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)
=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)
=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)
=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)
=> 7 = 7(đúng)
5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)
=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1
=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1
=> 2x + 41 = 1
=> 2x = -40
=> x = -20
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Answer:
\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^2-1}\) \(ĐK:x\ne1\)
\(\Rightarrow1\left(x^2+x+1\right)+2\left(x-1\right)=3x^2\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Rightarrow x^2+3x-3=3x^2\)
\(\Rightarrow2x^2-3x+1=0\)
\(\Rightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=1\text{(loại)}\end{cases}}\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\) \(ĐK:x\ne-1;x\ne3\)
\(\Rightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=\frac{4x}{2\left(x-3\right)\left(x+1\right)}\)
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
\(\Rightarrow x^2+x+x^2-3x=4x\)
\(\Rightarrow2x^2-6x=0\)
\(\Rightarrow2x\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=3\text{(loại)}\end{cases}}}\)
\(\frac{8-x}{x-7}-8=\frac{1}{x-7}\)
\(\Rightarrow\frac{8-x}{x-7}-\frac{1}{x-7}=8\)
\(\Rightarrow\frac{7-x}{x-7}=8\)
\(\Rightarrow-1=8\)
Vậy phương trình vô nghiệm
x(x+1)-(x+2)(x+3)=7
=> x2 +x - x2 - 5x -6 =7
=> -4x-6=7
=> -4x=13
=> x=\(\frac{-13}{4}\)
\(x\left(x+1\right)-\left(x+2\right)\left(x+3\right)=7\)
\(\Leftrightarrow x^2+x-x^2-3x-2x-6=7\)
\(\Leftrightarrow-4x-6=7\)
\(\Leftrightarrow-4x=7+6\)
\(\Leftrightarrow-4x=13\)
\(\Leftrightarrow x=\frac{-13}{4}\)
Vậy \(x=\frac{-13}{4}\)