Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)
\(=\left(x+1\right)\left(x+6\right)\left(x+3\right)\left(x+4\right)-7\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\)
Đặt \(x^2+7x+9=t\)
\(=\left(t-3\right)\left(t+3\right)-7\)
\(=t^2-9-7=t^2-16=\left(t-4\right)\left(t+4\right)\)
\(=\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)
\(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)
d) \(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)(1)
Đặt \(x^2+x+1=t\)
\(\Rightarrow\left(1\right)=t\left(t+1\right)-12=t^2+t-12\)
\(=t^2+4t-3t-12\)
\(=t\left(t+4\right)-3\left(t+4\right)=\left(t-3\right)\left(t+4\right)\)(2)
Mà \(x^2+x+1=t\)(ẩn phụ)
Nên \(\left(2\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
c) \(E=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(x^2+7x+10=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)-24=t^2+2t-24\)
\(=t^2+6t-4t-24\)
\(=t\left(t+6\right)-4\left(t+6\right)=\left(t-4\right)\left(t+6\right)\)(2)
Mà \(x^2+7x+10=t\)(ẩn phụ)
Nên \(\left(2\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
\(Dat:a^2+a+1=b\Rightarrow....=a\left(a+1\right)-12=\left(a+4\right)\left(a-3\right)\)
=
a) \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\) (1)
Đặt x2 + x +1 = t
Ta có : \(t\left(t+1\right)-12=t^2+t-12=t^2-3t+4t-12\)
\(=t\left(t-3\right)+4\left(t-3\right)=\left(t-3\right)\left(t+4\right)\)
Thay vào (1), ta được : \(\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
b) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\) (2)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt x2 + 7x + 11 = y
Ta có : \(\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)
Thay vào (2), ta được : \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= x4 + 10x3 + 35x2 + 50x + 24 - 24
= x4 + 10x3 + 35x2 + 50x
( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24
= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24
Đặt t = x2 + 5x + 5
=> ( t - 1 ). ( t + 1 ) - 24
= t2 - 1 - 24
= t2 - 25
= ( t - 5 ). ( t + 5 )
= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )
= ( x2 + 5x ) . ( x2 + 5x + 10 )
= x. ( x + 5 ) . ( x2 + 5x + 10 )
không cần phương pháp đó đâu, mik có cách này hay hơn nè
tìm nghiệm của đthức trên
nếu nghiệm là số dương thì khi phân tích xong sẽ có 1 tsố là (x-1)
nếu nghiệm là số âm thì...........................................1..........(x+1)
VD: phân tích thành nhân tử: 2x^2+5x-3
Nghiệm của đa thức trên là 3
=> 2x^2+6x-x-3
=> 2x(x+3)-1(x+3)
=> (2x-1)(x+3)
ĐÓ, KICK MIK NHA
~~~~~e)~~~~~
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=v\)
Ta có: \(v.\left(v+1\right)-12\)
\(=v^2+v-12\)
\(=v^2-3v+4v-12\)
\(=v\left(v-3\right)+4\left(v-3\right)\)
\(=\left(v-3\right)\left(v+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
~~~~~g)~~~~~
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(nhân cái đầu vs cái cuối, hai cái giữa nhân vs nhau)
Đặt \(x^2+5x+5=t\)
Ta có: \(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
~~~~~h)~~~~~
\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
Đặt \(x^2+2x+1=n\)
Ta có: \(\left(n-x\right)\left(n+x\right)+x^2\)
\(=n^2-x^2+x^2\)
\(=n^2\)
\(=\left(x^2+2x+1\right)^2\)
\(=\left(\left(x+1\right)^2\right)^2\)
\(=\left(x+1\right)^4\)
~~~~~~~~~~~~~~~~~~~~
(Mong là mình làm đúng, chúc you học tốt nha, tíck cho mìk với nhé!)
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)
\(=x\left(x-3\right)\left(x-1\right)\left(x-2\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
Đặt \(x^2-3x+1=t\)
\(=\left(t-1\right)\left(t+1\right)-3\)
\(=t^2-1-3=t^2-4\)
\(=\left(t-2\right)\left(t+2\right)\)
\(=\left(x^2-3x+1-2\right)\left(x^2-3x+1+2\right)\)
\(=\left(x^2-3x-1\right)\left(x^2-3x+3\right)\)