Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)
=> \(a^2-2a+6a-12=0\)
=> \(a\left(a-2\right)+6\left(a-2\right)=0\)
=> \(\left(a+6\right)\left(a-2\right)=0\)
=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)
- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)
b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .
c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)
- Đặt \(x^2-4=a\) và \(x^2-10=a-6\) ta được phương trình :
\(a\left(a-6\right)=72\)
=> \(a^2-6a-72=0\)
=> \(a^2+6a-12a-72=0\)
=> \(a\left(a+6\right)-12\left(a+6\right)=0\)
=> \(\left(a+6\right)\left(a-12\right)=0\)
=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)
- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)
d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)
=> \(a^2+a-42=0\)
=> \(a^2+7a-6a-42=0\)
=> \(a\left(a+7\right)-6\left(a+7\right)=0\)
=> \(\left(a-6\right)\left(a+7\right)=0\)
=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
a. (x2 + x)2 + 4.(x2 + x) - 12 (*)
Đặt x2 + x = a, ta có:
(*) = a2 + 4a - 12
= (a2 + 4a + 4) - 16
= (a + 2)2 - 16
= (a + 6)(a - 2)
= (x2 + x + 6)(x2 + x - 2)
b. (x2 + x+ 1)(x2 + x + 2) - 12 (**)
Đặt x2 + x + 1 = t, ta có:
(**) = t.(t + 1) - 12
= t2 + t - 12
= t2 + 4t - 3t - 12
= t(t + 4) - 3(t + 4)
= (t - 3)(t + 4)
= (x2 + x - 2)(x2 + x + 5)
c. (x + 1)(x + 2)(x + 3)(x + 4) - 24 (***)
= (x2 + 5x + 4)(x2 + 5x + 6) - 24
Đặt x2 + 5x + 4 = k, ta có:
(***) = k.(k + 2) - 24
= k2 + 2x - 24
= k2 + 6k - 4k - 24
= k(k + 6) - 4(k + 6)
= (k - 4)(k + 6)
= (x2 + 5x)(x2 + 5x + 10)
a) \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
Đặt \(x^2+x=y\) ta được:
\(y^2-14y+24\)
\(=x\left(y-12\right)-2\left(y-12\right)\)
\(=\left(y-2\right)\left(y-12\right)\)
Thay ngược trở lại:
\(\left(x^2+x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x-3\right)\left(x+4\right)\)
d) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+10\right)+1\)
Đặt \(x^2+5x+4=a\) được:
\(a\left(a+6\right)+1\)
\(=a^2+6a+1\)
\(=a^2+2.a.3+3^2-8\)
\(=\left(a+3\right)^2-\left(\sqrt{8}\right)^2\)
\(=\left(a+3-\sqrt{8}\right)\left(a+3+\sqrt{8}\right)\)
Mấy câu kia tương tự.
a)x4+2x3+5x2+4x-12
=(x4+2x3+x2)+(4x2+4x)-12
=(x2+x)2+4(x2+x)-12
Đặt t=x2+x
=t2+4t-12=(t-2)(t+6)
=(x2+x-2)(x2+x+6)
=(x-1)(x+2)(x2+x+6)
b)(x+1)(x+2)(x+3)(x+4)+1
=(x2+5x+4)(x2+5x+6)+1
Đặt x2+5x+4=t
t(t+2)+1=t2+2t+1
=(t+1)2=(x2+5x+4+1)2
=(x2+5x+5)2
c)(x+1)(x+3)(x+5)(x+7)+15
=(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+5)
=(x2+8x+10)(x+2)(x+6)
d)(x+1)(x+2)(x+3)(x+4)-24
=(x2+5x+4)(x2+5x+6)-24
Đặt t=x2+5x+4
t(t+2)-24=(t-4)(t+6)
=(x2+5x+4-4)(x2+5x+4+6)
=x(x+5)(x2+5x+10)
~~~~~e)~~~~~
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt \(x^2+x+1=v\)
Ta có: \(v.\left(v+1\right)-12\)
\(=v^2+v-12\)
\(=v^2-3v+4v-12\)
\(=v\left(v-3\right)+4\left(v-3\right)\)
\(=\left(v-3\right)\left(v+4\right)\)
\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
~~~~~g)~~~~~
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(nhân cái đầu vs cái cuối, hai cái giữa nhân vs nhau)
Đặt \(x^2+5x+5=t\)
Ta có: \(\left(t-1\right)\left(t+1\right)-24\)
\(=t^2-1-24\)
\(=t^2-25\)
\(=\left(t-5\right)\left(t+5\right)\)
\(=\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)
~~~~~h)~~~~~
\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)
Đặt \(x^2+2x+1=n\)
Ta có: \(\left(n-x\right)\left(n+x\right)+x^2\)
\(=n^2-x^2+x^2\)
\(=n^2\)
\(=\left(x^2+2x+1\right)^2\)
\(=\left(\left(x+1\right)^2\right)^2\)
\(=\left(x+1\right)^4\)
~~~~~~~~~~~~~~~~~~~~
(Mong là mình làm đúng, chúc you học tốt nha, tíck cho mìk với nhé!)