\(x+\sqrt{X}-6\))/(x-9)+(\(x+7\sqrt{X}+19\))/(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

a) ĐK: \(x\ge0;x\ne1\)

Trước tiên chúng ta tính: 

\(1-x\sqrt{x}=1-\left(\sqrt{x}\right)^3=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)\)

\(1+x\sqrt{x}=1+\left(\sqrt{x}\right)^3=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)

khi đó:

P = \(\left(1+\sqrt{x}+x+\sqrt{x}\right)\left(1-\sqrt{x}+x-\sqrt{x}\right)\)

\(=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)^2\)

\(=\left(x-1\right)^2\)

b) \(P< 7-4\sqrt{3}=4-2.2.\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)

=> \(\left(x-1\right)^2< \left(2-\sqrt{3}\right)^2\)

<=> \(\sqrt{3}-2< x-1< 2-\sqrt{3}\)

<=> \(\sqrt{3}-1< x< 3-\sqrt{3}\)

Đối chiếu điều kiện: \(\sqrt{3}-1< x< 3-\sqrt{3}\) và x khác 1.

17 tháng 6 2019

\(a,\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}=\left|\sqrt{x}-\sqrt{y}\right|\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                                \(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                               \(=y-x\)

\(b,\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

\(c,\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

\(d,6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-3+x=3-x\)

17 tháng 6 2019

\(a,\)\(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(=|\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)|\)

\(=|\sqrt{x}^2-\sqrt{y}^2|\)

\(=|x-y|\)

Vì \(x\le y\)\(\Rightarrow x-y\ge0\)

\(\Rightarrow|x-y|=x-y\)

22 tháng 6 2017

mk nhầm dấu sửa lại câu c là \(4x-x+2\)=  \(3x+2\)

22 tháng 6 2017

a,  \(\sqrt{\left(\sqrt{2}\right)^2+2\times2\times\sqrt{2}+2^2}\)+    \(\sqrt{2^2+2\times2\times\sqrt{2}+\left(\sqrt{2}\right)^2}\)

=   \(\sqrt{\left(\sqrt{2}+2\right)^2}\)+    \(\sqrt{\left(2-\sqrt{2}\right)^2}\)

=  \(\sqrt{2}+2+2-\sqrt{2}\)

=  4   

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)