Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: 5(x-2)=4(x-3) và m(x-2)-x(m-4)= 0
Xét 5(x-2)=4(x-3)
\(\Leftrightarrow\) \(5x-10-4x+12=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow x=-2\)
Xét m(x-2)-x(m-4)= 0
\(\Leftrightarrow mx-2m-mx+4x=0\)
\(\Leftrightarrow4x-2m=0\left(1\right)\)
Thay x = -2 vào pt (1), ta có:
\(4\cdot\left(-2\right)-2m=0\)
\(\Leftrightarrow-8-2m=0\)
\(\Leftrightarrow-2m=8\)
\(\Leftrightarrow m=-4\)
Vậy m = -4 thì 2 pt 5(x-2)=4(x-3) và m(x-2)-x(m-4)= 0 tương đương
bài 2: 4(x-3)=3(x-5) và m(x-3)-x(m-9)=0
Xét 4(x-3)=3(x-5)
\(\Leftrightarrow4x-12-3x+15=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Xét m(x-3)-x(m-9)=0
\(\Leftrightarrow mx-3m-mx+9x=0\)
\(\Leftrightarrow9x-3m=0\left(2\right)\)
Thay x = -3 vào pt (2), ta có:
\(9\cdot\left(-3\right)-3m=0\)
\(\Leftrightarrow-27-3m=0\)
\(\Leftrightarrow-3m=27\)
\(\Leftrightarrow m=-9\)
Vậy m = -9 thì 2 pt 4(x-3)=3(x-5) và m(x-3)-x(m-9)=0 tương đương
\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{x^4+4x^2+3}\left(ĐKXĐ:x\in R\right)\).
\(M=\frac{x^4+2}{x^6+1}+\frac{x^2-1}{x^4-x^2+1}-\frac{x^2+3}{\left(x^2+3\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\).
\(M=\frac{x^4+2}{\left(x^2+1\right)\left(x^4-x^2+1\right)}+\frac{\left(x^2-1\right)\left(x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}-\frac{x^4-x^2+1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2+\left(x^2-1\right)\left(x^2+1\right)-x^4+x^2-1}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\).
\(M=\frac{x^4+2+x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^4+x^2}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\)
\(M=\frac{x^2\left(x^2+1\right)}{\left(x^2+1\right)\left(x^4-x^2+1\right)}=\frac{x^2}{x^4-x^2+1}\).
Vậy với \(x\in R\)thì \(M=\frac{x^2}{x^4-x^2+1}\).
1. Tính:
a)(x+4) (x^2 - 4x+16)=(x+4)(x2-4x+42)=x3+64
b)(x-3y) (x^2 + 3xy+3y^2)=x3-(3y)3
c)(x-3)^2 -(x+3)^3=(x2-6x+9)-(x3+9x2+27x+27)=-8x2-33x-18-x3
d)(x^2-1)^3 - (x^2 +1)^3=(x2-1-x2-1)[(x2-1)2+(x2-1)(x2+1)+(x2+1)2]
=-2(x4-2x2+1+x4-1+x4+2x2+1)
=-2(3x4+2)=-6x4-4
a/ \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=0\)
\(\Leftrightarrow x^3-2x^2+4x+2x^2-4x+8-x^3-2x=0\)
\(\Leftrightarrow-2x=-8\)
\(\Leftrightarrow x=4\)
Vậy .....................
b/ \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x^6-3x^4+3x^2-1-\left(x^6-x^4+x^4-x^2+x^2-1\right)=0\)
\(\Leftrightarrow x^6-3x^4+3x^2-1-x^6+1=0\)
\(\Leftrightarrow-3x^4+3x^2=0\)
\(\Leftrightarrow3x^2\left(-x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x^2=0\\-x^2+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-x^2=-1\Rightarrow x^2=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy pt có 3 nghiệm là \(\left\{{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
x^(m + 4) + x^(m + 3) - x - 1
=x^m.x^4+x^m.x^3-x-1
=x^m(x^4+x^3)-(x+1)
=x^m.x^3(x+1)-(x+1)
=(x^(m+3)-1)(x+1)