Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(\left(x^2-2y\right)\left(x^4+2x^2y+4y^2\right)-x^3\left(x-y\right)\left(x^2+xy+y^2\right)+8y^3\)
\(=\left(x^2\right)^3-\left(2y\right)^3-x^3\left(x^3-y^3\right)+8y^3\)
\(=x^6-8y^3-x^6+x^3y^3+8y^3\)
\(=x^3y^3\)
b, \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-1\right)^3+7\)
\(=x^3-8-\left(x^3-3x^2+3x-1\right)+7\)
\(=x^3-8-x^3+3x^2-3x+1+7\)
\(=3x^2-3x\)
c, \(x\left(x+2\right)\left(2-x\right)+\left(x+3\right)\left(x^2-3x+9\right)\)
\(=x\left(4-x^2\right)+x^3+27\)
\(=4x-x^3+x^3+27\)
\(=4x+27\)
\(x^4+x^2>=2\sqrt{x^4\cdot x^2}=2x^3;x^2+1>=2\sqrt{x^2}=2x;x^4+1>=2\sqrt{x^4}=2x^2\)(bđt cosi)
\(\Rightarrow x^4+x^2+x^2+1+x^4+1=2\left(x^4+x^2+1\right)>=2\left(x^3+x+x^2\right)\Rightarrow x^4+x^2+1>=x^3+x^2+x\)
\(\Rightarrow M=\frac{x^2}{x^4+x^2+1}< =\frac{x^2}{x^3+x^2+x}\)
\(x^3+x^2+x>=3\sqrt[3]{x^3x^2x}=3\sqrt[3]{x^6}=3x^2\)(bđt cosi)\(\Rightarrow\frac{x^2}{x^3+x^2+x}< =\frac{x^2}{3x^2}=\frac{1}{3}\Rightarrow M< =\frac{1}{3}\)
dáu = xảy ra khi x=1
vậy max M là \(\frac{1}{3}\)khi x=1
mk lm sai rồi lm lại nhé
\(x^4,x^2>=0;1>0\Rightarrow x^4+x^2+1>=3\sqrt[3]{x^4\cdot x^2\cdot1}=3\sqrt[3]{x^6}=3x^2\)(bđt cosi)
\(\Rightarrow\frac{x^2}{x^4+x^2+1}< =\frac{x^2}{3x^2}=\frac{1}{3}\)
dấu = xảy ra khi \(x^4=x^2=1\Rightarrow x=+-1\)
vậy max M là \(\frac{1}{3}\)khi x=+-1
x^2 - 4x + 4 = 5 ( x - 2 )
x^2 - 4x + 4 - 5 ( x - 2 ) = 0
( x - 2 ) ^2 - 5 ( x - 2 ) = 0
( x - 2 ) ( x - 2 - 5 ) = 0
( x - 2 ) ( x - 7 ) = 0
x - 2 = 0 hoặc x - 7 = 0
x = 2 hoặc x = 7
c) (x-2)^2=5(x-2)
=> x-2=5 hoặc x-2 =0
=> x=7 hoặc x=2
d) (2x-3)^2=(5-x)^2
=> 2x-3=5-x
=> x=8/3
a, 2x-1 thuộc ước của 2,rồi giải ra
b,c tương tự
d\(\frac{x^2-64-123}{x+8}=\frac{\left(x+8\right)\left(x-8\right)-123}{x+8}=x-8-\frac{123}{X+8}\) .........rồi làm tương tự như câu a,,,,,,,,,,,,còn câu e cũng gần giống câu d
1 ) 2x2 - 5x + 4x - 10 = 0
=> 2x2 + 4x - 5x - 10 = 0
=> 2x ( x + 2 ) - 5. ( x + 2 ) = 0
=> ( x + 2 ) . ( 2x - 5 ) = 0
=> \(\orbr{\begin{cases}x+2=0\\2x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)
Vậy \(x\in\left\{-2;\frac{5}{2}\right\}\)
2 ) x2 ( 2x - 3 ) + 3 - 2x = 0
=> x2 ( 2x - 3 ) - ( 2x - 3 ) = 0
=> ( 2x - 3 ) . ( x2 - 1 ) = 0
=> \(\orbr{\begin{cases}2x-3=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x=3\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=\pm1\end{cases}}\)
Vậy \(x\in\left\{\frac{3}{2};\pm1\right\}\)
\(\frac{3\left(x-2\right)}{4}\div\frac{2-x}{2}=\frac{3\left(x-2\right)}{4}\times\frac{-2}{x-2}=\frac{-3}{2}\)
học tốt
Rút gọn nhé !
\(\frac{3}{4}.\left(x-2\right):\frac{1}{2}.\left(2-x\right)=\frac{3x-6}{4}.2.\left(2-x\right)\)
\(=\frac{3x-6}{4}.\left(4-2x\right)=\frac{\left(3x-6\right).\left(4-2x\right)}{4}\)
\(=\frac{\left(12x-24\right)-\left(6x^2+12x\right)}{4}=\frac{-24-6x^2}{4}\)
\(=\frac{-12-3x^2}{2}=\frac{-3.\left(4+x^2\right)}{2}\)
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
a) Bình phương \(x+\frac{1}{x}=3\)
Kết quả: 7
b) Lập phương \(x+\frac{1}{x}=3\)
Kết quả: 18
c) Bình phương \(x^2+\frac{1}{x^2}\)
Kết quả: 47
Đề là j vậy bn
TL:
\(x^{m+2}-x^2\)
\(=x^2\left(x^m-1\right)\)