K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

1 ) 2x2 -  5x + 4x - 10 = 0

=> 2x2 + 4x - 5x - 10 = 0

=> 2x ( x + 2 ) - 5. ( x + 2 ) = 0

=> ( x + 2 ) . ( 2x - 5 ) = 0

=> \(\orbr{\begin{cases}x+2=0\\2x-5=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=-2\\x=\frac{5}{2}\end{cases}}\)

Vậy \(x\in\left\{-2;\frac{5}{2}\right\}\)

2 ) x2 ( 2x - 3 ) + 3 - 2x = 0

=> x2 ( 2x - 3 ) - ( 2x - 3 ) = 0

=> ( 2x - 3 ) . ( x2 - 1 ) = 0

=> \(\orbr{\begin{cases}2x-3=0\\x^2-1=0\end{cases}}\)  

=> \(\orbr{\begin{cases}2x=3\\x^2=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=\pm1\end{cases}}\)

Vậy \(x\in\left\{\frac{3}{2};\pm1\right\}\)

a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

hay \(x=-\dfrac{1}{4}\)

c) Ta có: \(8x^3-50x=0\)

\(\Leftrightarrow2x\left(4x^2-25\right)=0\)

\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

13 tháng 7 2021

a) x(x - 5) - 4x + 20 = 0

\(\Leftrightarrow\) x(x - 5) - (4x + 20)

\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0

\(\Leftrightarrow\) (x - 5)(x - 4)

Khi x - 5 = 0 hoặc x - 4 = 0

 \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 4

 Vậy S = \(\left\{5;4\right\}\)

b) x(x + 6) - 7x - 42 = 0

 \(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0

 \(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0

 \(\Leftrightarrow\) (x + 6)(x - 7) = 0

Khi x - 6 = 0 hoặc x - 7 = 0

   \(\Leftrightarrow\) x = 6           \(\Leftrightarrow\) x = 7

 Vậy S = \(\left\{6;7\right\}\)

c) x3 - 5x2 - x + 5 = 0

 \(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0

 \(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0

 \(\Leftrightarrow\) (x - 5)(x2 - 1) = 0

 \(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0

 Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

   \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 1            \(\Leftrightarrow\) x = -1

 Vậy S = \(\left\{5;1;-1\right\}\)

d) 4x2 - 25 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0

\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0

Khi 2x - 5 = 0 hoặc -x + 12 = 0

  \(\Leftrightarrow\) 2x = 5             \(\Leftrightarrow\)   -x = -12

  \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)              \(\Leftrightarrow\) x = 12

 Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)

e) x3 + 27 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0

\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0

\(\Leftrightarrow\) (x - 3)x(x - 2)

 Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0

    \(\Leftrightarrow\) x = 3                            \(\Leftrightarrow\) x = 2

 Vậy S = \(\left\{3;0;2\right\}\)

 Chúc bạn học tốt

a) Ta có: \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

b) Ta có: \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

10 tháng 10 2021

a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)

b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)

c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Xem lại đề câu d 

1: Ta có: \(\left(3-x\right)^2+\left(2x+1\right)^2-\left(2-x\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-2\right)=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

2: Ta có: \(\left(1-2x\right)^2-3\left(x-1\right)^2+\left(x+1\right)^2-\left(x-1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow4x^2-4x+1-3x^2+6x-3+\left(x+1\right)^2-2\left(x-1\right)^2=0\)

\(\Leftrightarrow x^2+2x-2+x^2+2x+1-2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow2x^2+4x+1-2x^2+4x-2=0\)

\(\Leftrightarrow x=\dfrac{1}{8}\)

26 tháng 11 2021

\(A=x^3-2x+n\)

\(B=n-2\)

\(A\text{⋮}B\) ⇒ \(\left(x^3-2x+n\right)\text{⋮}\left(n-2\right)\)

⇒ \(\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)

⇒ \(\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)

⇒ \(\left[\left(x-2\right)\left(x^2+2x+2\right)+\left(n+4\right)\right]\text{⋮}\left(x-2\right)\)

Vì \(\left(x-2\right)\left(x^2+2x+2\right)\text{⋮}\left(n-2\right)\)

Để \(A\text{⋮}B\)

⇒ \(n+4=0\)

⇒ \(n=-4\)

23 tháng 8 2023

\(B=-4x^2+12x-11\\ =-\left(\left(2x\right)^2-12x+11\right)\\ =-\left(\left(2x\right)^2-2.2x.3+9+2\right)\\ =-\left(2x-3\right)^2-2< 0\)

(vì \(\left(2x-3\right)^2\ge0\forall x\Rightarrow-\left(2x-3\right)^2\le0\forall x\Rightarrow-\left(2x-3\right)^2-2< 0\))

C=-2x^2+2x-5

=-2(x^2-x+5/2)

=-2(x^2-x+1/4+9/4)

=-2(x-1/2)^2-9/2<=-9/2<0 với mọi x

18 tháng 1 2022

một đòn bẫy dài một mét .đặt ở đâu để có thể dùng 3600n có thể nâng tảng đá nặng 120kg?

24 tháng 12 2023

.

24 tháng 12 2023

a: \(\left(x-3\right)\left(2x^2-3x+4\right)\)

\(=2x^3-3x^2+4x-6x^2+9x-12\)

\(=2x^3-9x^2+13x-12\)

b: \(\left(4x^2y-5xy^2+6xy\right):2xy\)

\(=\dfrac{4x^2y-5xy^2+6xy}{2xy}\)

\(=\dfrac{2xy\cdot2x-2xy\cdot2,5y+2xy\cdot3}{2xy}\)

\(=2x-2,5y+3\)

c: \(\dfrac{x}{2x+4}-\dfrac{2}{x^3+2x}\)

\(=\dfrac{x\left(x^3+2x\right)-2\left(2x+4\right)}{x\left(x^2+2\right)\cdot2\cdot\left(x+2\right)}\)

\(=\dfrac{x^4+2x^2-4x-8}{2x\left(x^2+2\right)\left(x+2\right)}\)

2:

=>x^3-1-2x^3-4x^6+4x^6+4x=6

=>-x^3+4x-7=0

=>x=-2,59

4: =>8x-24x^2+2-6x+24x^2-60x-4x+10=-50

=>-62x+12=-50

=>x=1