K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

xn-1.x+xn-1.y-y.xn-1-y.yn-1

=xn-yn

21 tháng 7 2017

\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(x^{n-2}+x^{n-1}y-x^{n-1}y+y^{n-2}\)

=\(x^{n-2}+y^{n-2}\)

19 tháng 4 2017

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



Bài giải:

a) x (x - y) + y (x - y) = x2 – xy+ yx – y2

= x2 – xy+ xy – y2

= x2 – y2

b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn

= xn + xn – 1y - xn – 1y - yn

= xn – yn.



20 tháng 11 2017

1/

\(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

\(=\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\dfrac{x^3-6x^2y}{x-6y}\)

\(=\dfrac{x^2\left(x-6y\right)}{x-6y}\)

\(=x^2\)

\(2\)/

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z^{ }\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\dfrac{x-y+z}{x-y-z}\)

3/

\(\dfrac{\left(n+1\right)!}{n!\left(n+2\right)}\)

\(=\dfrac{n!\left(n+1\right)}{n!\left(n+2\right)}\)

\(=\dfrac{n+1}{n+2}\)

4/

\(\dfrac{n!}{\left(n+1\right)!-n!}\)

\(=\dfrac{n!}{n!\left(n+1\right)-n!}\)

\(=\dfrac{n!}{n!\left[\left(n+1\right)-1\right]}\)

\(=\dfrac{n!}{n!.n}\)

\(=\dfrac{1}{n}\)

5/

\(\dfrac{\left(n+1\right)!-\left(n+2\right)!}{\left(n+1\right)!+\left(n+2\right)!}\)

\(=\dfrac{\left(n+1\right)!-\left(n+1\right)!\left(n+2\right)}{\left(n+1\right)!+\left(n+1\right)!\left(n+2\right)}\)

\(=\dfrac{\left(n+1\right)!\left(-n-1\right)}{\left(n+1\right)!\left(n+3\right)}\)

\(=\dfrac{-n-1}{n+3}\)

20 tháng 11 2017

Hỏi đáp ToánHỏi đáp Toán

19 tháng 8 2015

a) \(x\left(x-y\right)+y\left(x-y\right)\)

\(=x^2-xy+xy-y^2\)

\(=x^2-y^2\)

b) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}y-x^{n-1}y-y^n\)

\(=x^n-y^n\)

19 tháng 6 2017

a) \(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)-4\left(x^{n+1}+2y^{n-1}\right)\)

\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)

\(=-8y^{n-1}+4x^{n+1}\)

b) \(\left(\dfrac{3}{4}x^{n+1}-\dfrac{1}{2}y^n\right)\cdot2xy-\left(\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)

\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}+\left(-\dfrac{2}{3}x^{n+1}-\dfrac{5}{6}y^n\right)\cdot7xy\)

\(=\dfrac{3}{2}x^{n+2}y-xy^{n+1}-\dfrac{14}{3}x^{n+2}y+\dfrac{35}{6}xy^{n+1}\)

\(=-\dfrac{19}{6}x^{n+2}y+\dfrac{29}{6}xy^{n+1}\)

19 tháng 6 2017

a)\(\left(3x^{n+1}-y^{n-1}\right)-3\left(x^{n+1}+5y^{n-1}\right)+4\left(x^{n+1}+2y^{n-1}\right)\)

\(=3x^{n+1}-y^{n-1}-3x^{n+1}-15y^{n-1}+4x^{n+1}+8y^{n-1}\)

\(=4x^{n+1}-8y^{n-1}\) \(\left(=4\left(x^{n+1}-2y^{n-1}\right)\right)\)

29 tháng 8 2017

xn-1(x+y) - y(xn-1 + yn-1)

= xn + xn-1y - xn-1y - yn

= xn - yn

29 tháng 8 2017

Ta có:

\(x^{n-1}.\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}y-x^{n-1}y-y^n\)

\(=x^n-y^n\)

23 tháng 7 2020

a) \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^{n-1}x+x^{n-1}y-x^{n-1}y-y^{n-1}y\)

\(=x^n-y^n\)

b) \(6x^n\left(x^2-1\right)+2x^3\left(3x^{n+1}+1\right)\)

\(=6x^nx^2-6x^n+2x^33x^{n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{3+n+1}+2x^3\)

\(=6x^{n+2}-6x^n+6x^{n+4}+2x^3\)

Đề có sai ko vậy bạn ???

a) Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)

\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y\cdot y^{n-1}\)

\(=x^n-y^n\)