Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A +B + C =180độ
=>90 độ + 60 độ + C =180 độ
=> C =30 độ
Mà 30 độ < 60 độ <90 độ
=>C < B < A
=> AB < AC < BC
b)Xét tam giác vuông ABD(vuông ở A) và tam giác vuong KDB(vuông ở K)
Cạnh BK chung
ABD = DBK ( vì BK là phân giác góc B)
=> Tam giác ABD = Tam giác KDB(cạnh huyền - góc nhọn)
c) Vì BK là phân giác góc B => KBD = 1/2 B = 1/2 60 độ =30 độ
Mà C =30 độ
=>KBD = C = 30 độ
=> Tam giác BDC cân ở D
Vì tam giác ABD = Tam giác KDB nên BA=BK(2 cạnh tương ứng) (1)
Mà góc C=30 độ,A =90 độ
Áp dụng tính chất góc đối diện với cạnh 30 độ =1/2 cạnh huyền => AB =1/2 BC (2)
Từ (1) và (2) => BA=BK=1/2 BC
d)BA = BK = 1/2 BC => BC= 3 x 2=6
Xét tam giác ADI và tam giác KDC :
ADI = KDC(2 góc đối đình)
AD=DK( 2 cạnh tương ứng của tam giác ABD và tam giác KBD)
DAI=DKC ( 2 góc kề bù với 2 góc 90 độ)
=> Tam giác ADI = Tam giác KDC( góc - cạnh - góc)
=>AI = KC(2 cạnh tương ứng)
Mà KC=1/2 BC =>AI=CK=3 cm
Những chỗ có gạch trên đầu là kí hiệu của góc nhé(vì ở đây ko thấy kí hiệu mũ nên phải viết gạch ngang)
Nếu có chỗ nào không hiểu bạn cứ viết đi,mình giải thích cho
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là tia phân giác của góc BAC
c: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
DO đó: ΔABI=ΔACI
Suy ra: \(\widehat{ABI}=\widehat{ACI}=90^0\)
hay CI\(\perp\)CA
A,
xét \(\Delta ABD\)và \(\Delta ACD\)
CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)
SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C) (1)
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)
MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180
=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90
B, (1) => BC=DC=1/2 BC=8
ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ
\(AB^2=AD^2+BD^2\)
=> AD^2=36
=>AD=6
Bai 4:(tu ke hinh nha!)
*Truong hop BC la canh huyen;
tam giac ABC vuong tai A .Ap dung dinh ly pytago ta co:
BC2=AB2+AC2
102=62+AC2
100=36+AC2
AC2=100-36
AC2=64
AC=8
*Truong hop AC la canh huyen
AC2=AB2+BC2
AC2=62+102
AC2=36+100
AC2=136
AC=CAN CUA 136
Vay AC bang :can 136:8
Bài 1 ( Hình tự kẻ )
a) Xét tam giác ABD và tam giác HBD, ta có:
góc BAD = góc BHD = 90 độ
BD là cạnh chung
góc ABD = góc HBD ( BD là đường phân giác của góc ABH )
=> tam giác ABD = tam giác HBD ( cạnh huyền - góc nhọn )
b) Xét tam giác ADE và tam giác HDC, ta có:
góc EAD = góc CHD = 90 độ
DA = DH ( vì tam giác ABD = tam giác HBD )
góc ADE = góc HDC ( đối đỉnh )
=> tam giác ADE = tam giác HDC ( cạnh góc vuông - góc nhọn )
=> góc AED = góc HCD ( 2 góc tương ứng )
** Mk chỉ có thể giúp dc đến đó thôi
a) Áp dụng định lí Pi - ta - go, ta có:
102 - 52 = 75 => AC = \(\sqrt{75}\)
Còn mấy phần kia mình hơi vội nên chưa lm đc thông cảm nhé
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!