Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TXĐ : D = R
Ta có
+) √x2+1>√x2=|x| lớn hơn hoặc bằng −x=>√x2+1+x khác 0 với mọi x
Do đó :
f(x)=(x+√x21)2 trên (x+√x2+1)(√x2+1−x)−2x2−1=2x√x2+1
Với mọi x thuộc R ta có -x cũng thuộc R ( đối xứng ) => f(-x) = 2(-x) √(−x)2+1=-2x √x2+1 = -f(x)
=> hàm lẻ
các bạn ơi đề này mình lỡ ấn sai rồi, nên các bạn ko cần giải nó nhé
a/ ĐKXĐ: \(x\ge2\)
Miền xác định của hàm ko đối xứng nên hàm ko chẵn ko lẻ
b/ ĐKXĐ: \(-2\le x\le2\)
\(f\left(-x\right)=\sqrt{2-x}+\sqrt{2+x}=f\left(x\right)\) nên hàm chẵn
c/ ĐKXĐ: \(\left[{}\begin{matrix}-2\le x< 0\\0< x\le2\end{matrix}\right.\)
\(f\left(-x\right)=\frac{\sqrt{2-x}+\sqrt{2+x}}{-x}=-f\left(x\right)\Rightarrow\) hàm lẻ
d/ \(f\left(-x\right)=x^2-3x+1\Rightarrow\) hàm ko chẵn ko lẻ
e/ \(f\left(-x\right)=\left|-x+1\right|+\left|-x-1\right|=\left|x-1\right|+\left|x+1\right|=f\left(x\right)\Rightarrow\) hàm chẵn
f/ \(f\left(-x\right)=\left|-2x+1\right|-\left|-2x-1\right|=\left|2x-1\right|-\left|2x+1\right|=-f\left(x\right)\)
\(\Rightarrow\) Hàm lẻ
Đặt y = f(x) = x2 + x + 1.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)
Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.
a/ \(f\left(-x\right)=\left(-x\right)^2+3\left(-x\right)^4=x^2+3x^4=f\left(x\right)\)
Hàm chẵn
b/ \(f\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-f\left(x\right)\)
Hàm lẻ
c/ \(f\left(-x\right)=-2\left(-x\right)^4+\left(-x\right)^2-1=-2x^4+x^2-1=f\left(x\right)\)
Hàm chẵn
d/ \(f\left(1\right)=6\); \(f\left(-1\right)=-2\ne f\left(1\right)\ne-f\left(1\right)\)
Hàm ko chẵn ko lẻ
e/ Tương tự câu trên, hàm ko chẵn ko lẻ
f/ \(f\left(-x\right)=\frac{2\left(-x\right)^2-4}{-x}=\frac{2x^2-4}{-x}=-\left(\frac{2x^2-4}{x}\right)=-f\left(x\right)\)
Hàm lẻ trong miền xác định
\(DK:\hept{\begin{cases}-1\le x\le1\\x\ne0\end{cases}}\)
Ta co:
\(f\left(-x\right)=\frac{\sqrt{1-\left(-x\right)}+\sqrt{-x+1}}{\sqrt{-x+2}-\sqrt{2-\left(-x\right)}}=-\left(\frac{\sqrt{1-x}+\sqrt{x+1}}{\sqrt{x+2}-\sqrt{2-x}}\right)=-f\left(x\right)\)
Suy ra: f(x) la ham so chan
f(x) = x +\(\sqrt{x^2}\)+ 1\(\sqrt{x^2}\)+ 1 - x
đề là thế này à