K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2021

TXĐ: D=R

Khi \(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)

\(=x^4-3x^2+1\)

=f(x)

=> f(x) là hàm số chẵn

NV
18 tháng 9 2019

a/ \(f\left(-x\right)=\left(-x\right)^2+3\left(-x\right)^4=x^2+3x^4=f\left(x\right)\)

Hàm chẵn

b/ \(f\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-f\left(x\right)\)

Hàm lẻ

c/ \(f\left(-x\right)=-2\left(-x\right)^4+\left(-x\right)^2-1=-2x^4+x^2-1=f\left(x\right)\)

Hàm chẵn

d/ \(f\left(1\right)=6\); \(f\left(-1\right)=-2\ne f\left(1\right)\ne-f\left(1\right)\)

Hàm ko chẵn ko lẻ

e/ Tương tự câu trên, hàm ko chẵn ko lẻ

f/ \(f\left(-x\right)=\frac{2\left(-x\right)^2-4}{-x}=\frac{2x^2-4}{-x}=-\left(\frac{2x^2-4}{x}\right)=-f\left(x\right)\)

Hàm lẻ trong miền xác định

21 tháng 9 2019

Quy tắc xét tính chẵn lẻ của hàm số:

Chẵn \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=f\left(-x\right)\end{matrix}\right.\)

Lẻ \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=-f\left(-x\right)\end{matrix}\right.\)

a/ \(g=2x^4-x^2+5\)

\(x\in D=R\Rightarrow-x\in D\)

\(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)

=> hàm số chẵn

b/ \(y=x^3+3x\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)\)

\(\Rightarrow y\left(x\right)=-y\left(-x\right)\)

=> hàm số lẻ

c/ \(y=x^3+3x+1\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)+1=-x^3-3x+1\)

\(\Rightarrow\left\{{}\begin{matrix}y\left(x\right)\ne y\left(-x\right)\\y\left(x\right)\ne-y\left(-x\right)\end{matrix}\right.\)

=> hàm số ko chẵn ko lẻ

d/ \(y=x^4-3\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left(-x\right)^4-3=x^4-3=y\left(x\right)\)

=> hàm số chẵn

e/ \(y=3x^4-\left|x\right|+2\)

\(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=3\left(-x\right)^4-\left|-x\right|+2=3x^4-\left|x\right|+2=y\left(x\right)\)

=> hàm số chẵn

f/ \(x\in D=R\Rightarrow-x\in D\)

\(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+ \left|x-1\right|=y\left(x\right)\)

=> hàm số chẵn

Các câu sau làm tương tự

NV
21 tháng 9 2019

a/ \(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)

Hàm chẵn

b/ \(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-y\left(x\right)\)

Hàm lẻ

c/ \(y\left(-x\right)=-x^3-3x+1\)

Hàm ko chẵn ko lẻ

d/ \(y\left(-x\right)=x^4-3=y\left(x\right)\) hàm chẵn

e/ \(y\left(-x\right)=3x^4-\left|x\right|+2=y\left(x\right)\) hàm chẵn

f/ \(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+\left|x-1\right|=y\left(x\right)\)

Hàm chẵn

g/ \(y\left(-x\right)=\left|-x-1\right|-\left|-x+1\right|=\left|x+1\right|-\left|x-1\right|=-y\left(x\right)\)

Hàm lẻ

h/ Hàm ko chẵn ko lẻ

NV
10 tháng 7 2019

a/ Hàm số không chẵn không lẻ

b/\(x\in D\Rightarrow-x\in D\)

\(f\left(-x\right)=\frac{2\left(-x\right)^2}{\left(-x\right)^2-9}=\frac{2x^2}{x^2-9}=f\left(x\right)\)

Hàm số chẵn

c/ \(f\left(-x\right)=\frac{\left(-x\right)^3-5\left(-x\right)}{\left(-x\right)^2+2}=-\frac{x^3-5x}{x^2+2}=-f\left(x\right)\)

Hàm lẻ

13 tháng 4 2016

a) Tập xác định của y = f(x) = |x| là D = R.

∀x ∈ R => -x ∈ R

f(- x) = |- x| = |x| = f(x)

Vậy hàm số y = |x| là hàm số chẵn.

b) Tập xác định của

y = f(x) = (x + 2)2 là R.

x ∈ R => -x ∈ R

f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)

f(- x) ≠ – f(x) = – x2 – 4x – 4

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

c)         D = R, x ∈ D => -x ∈ D

f(– x) = (– x3) + (– x) = – (x3 + x) = – f(x)

Vậy hàm số đã cho là hàm số lẻ.

d) Hàm số không chẵn cũng không lẻ.

Trả lời:    f(3) = 4;    f(- 1) = – 1;   f(2) = 3.

7 tháng 1 2020

TXĐ: D = [\(-a^2\); 1 ]

\(f\left(x\right)=\sqrt{1-x}+\left(a^2-a+1\right)\sqrt{x+a^2}\)

\(f\left(-x\right)=\sqrt{1+x}+\left(a^2-a+1\right)\sqrt{a^2-x}\)

Để a là hàm số chẵn : \(f\left(x\right)=f\left(-x\right)\) với mọi x thuộc TXĐ D.

<=> \(\hept{\begin{cases}\sqrt{1-x}=\left(a^2-a+1\right)\sqrt{a^2-x}\\\sqrt{1+x}=\left(a^2-a+1\right)\sqrt{a^2+x}\end{cases}}\)

<=> \(\hept{\begin{cases}a^2-a+1=1\\a^2=1\end{cases}}\Leftrightarrow a=1\)thử lại thỏa mãn

Vậy a = 1.